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1. Introduction

The concept of multialgebraic structure – an “algebraic like” structure but endowed with
multiple valued operations – has been studied since the 1930s; in particular, the concept
of hypergroup was introduced by Marty in 1934 and the concept of hyperrings was
introduced by Krasner in the 1950s.

Some general algebraic studies have been conducted on multialgebras ([6] and
[13]). In particular, for multirings/hypergroups, various properties and applications have
been explored. We would like to cite those that are related to our research group,
including applications in abstract quadratic forms theory ([10], [5], [18], [17], [14]),
tropical geometry ([9]), and a more detailed discussion on variants of the concept of
polynomials over hyperrings ([9], [2]). For a comprehensive overview of the foundations
of hypergroup theory and numerous references to applications, we recommend the article
[11].

In this present work, we address the basic algebraic and categorical aspects
of hypergroups, with the following objectives: (1) introducing the notion of a hyper
preadditive category; (2) developing a theory of (hyper) homology/cohomology over
hyperstructures; and (3) establishing a theory of sheaves over hyperstructures. Our aim is
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to explore the entire structure of hypergroups in the most general setting possible, without
attempting to obtain a group from a hypergroup.

It is important to note that we do not attempt to provide an in-depth analysis of
all three aspects mentioned above. Instead, our goal is to present a broad framework in
which (almost) all hyperalgebras can be inserted and studied. We also acknowledge that a
similar idea was previously explored in [1], although our definition of hypergroups differs
slightly.

The structure of the paper is as follows: We begin by presenting the definition
of hypergroups we are considering, along with key examples and basic properties. In
Section 3, we study the category of hypergroups, focusing on its (co)kernels, (co)products,
and directed (co)limits. Subsequently, in Section 4, we narrow our focus to hyperbolic
hypergroups, as their corresponding category exhibits more desirable properties (for
instance, we prove that morphisms of hyperbolic hypergroups are monomorphisms
precisely when they are injective).

Moving on to Section 5, we introduce the concepts of hyper-almost-preadditive
and hyper-almost-abelian categories. The category of abelian hypergroups serves as an
example of such abstract categories. We also briefly discuss the behavior of injective
objects and exact sequences within this context. Finally, the last section addresses the
interaction between the theory we are constructing, recent developments utilizing sheaves
of hyperrings, and potential avenues for future research.

2. Hypergroups

The content of this section is quite standard in the literature of hypergroups (and
hyperrings/hypergroups). However, at this moment there are no unified notation for these
objects/concepts. We refer to [11] in order to get an overview of the theory.

Hypergroups are a generalization of groups. We can think that a hypergroup is a
group with a multivalued operation:
Definition 2.1. A hypergroup is a quadruple (G, ∗, r, 1), where G is a non-empty set,
∗ : G × G → P(G) \ {∅}1 (we denote x ∗ y := ∗(x, y)) and r : G → G are functions,
and 1 is an element of G satisfying:

i - If z ∈ x ∗ y then x ∈ z ∗ r(y) and y ∈ r(x) ∗ z.
ii - y ∈ 1 ∗ x if and only if x = y.

iii - With the convention x ∗ (y ∗ z) =
⋃

w∈y∗z
x ∗ w and (x ∗ y) ∗ z =

⋃
t∈x∗y

t ∗ z,

x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G.
1Here P(G) is the power set of G, i.e, P(G) := {A : A ⊆ G}.
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A hypergroup is said to be commutative if
iv - x ∗ y = y ∗ x for all x, y ∈ G.

Observe that by (i) and (ii), 1 ∗ x = x ∗ 1 = {x} for all x ∈ G. When a ∗ b = {x}
be a unitary set, we just write a ∗ b = x.

For a ∈ G, we also denote r(a) := a−1. Combining (i) and (ii), we get for all
a ∈ G that a ∈ 1 ∗ a, 1 ∈ a ∗ a−1 and if 1 ∈ a ∗ b then b = a−1.

From now on, we just denote a ∗ b = a · b = ab.

Example 2.2. Every group (G, ·, 1) is a hypergroup if we define the multi-operation by
a ∗ b = {a · b}.

Example 2.3 ([7]). Let G be a group and H ⊆ G be a subgroup (not necessarily normal).
Define

G/H := {aH : a ∈ G}.

In other words, G/H is the set of cosets which, in this case, does not arise from an
equivalence relation in general. We denote the elements in G/H simply by [a] := aH .
Now, for [a], [b] ∈ G/H , define

[a] ∗ [b] = {[d] ∈ G/H : there exist a′, b′, d′ ∈ G

with [d′] = [d], [a′] = [a], [b′] = [b] and d′ ∈ a′ ∗ b′}.

Then (G/H, ∗, [1]) is a hypergroup which is abelian if G is abelian.

Example 2.4 (Multigroup of a Linear Order, 3.4 of [19]). Let (Γ, ·, 1,≤) be an ordered
abelian group. We have an associated hypergroup structure (Γ∪{0},+,−·, 0, 1) with the
rules −a := a, a · 0 = 0 · a := 0, the convention 0 ≤ a for all a ∈ Γ, and

a+ b :=


a if a < b

b if b < a

[0, a] if a = b.

Example 2.5 (The Hypergroup Q2). Q2 = {−1, 0, 1} is a hypergroup with the
multivalued sum defined by relations

0 + x = x+ 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1

1 + (−1) = (−1) + 1 = {−1, 0, 1}.

If we consider in Q2 the usual product (in Z), then we have a hyperfield.
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Example 2.6. Let K = {0, 1} with the sum defined by relations x + 0 = 0 + x = x,
x ∈ K and 1 + 1 = {0, 1}. This is a hypergroup, called Krasner’s hypergroup (in fact, it
is also a hyperfield, and for more details the reader can consult [9]).

For hypergroups there are other examples of interest. For more details see, for
instance, [11]. For hyperrings/hypergroups and applications see for instance [15], [5] or
[19]. Here are the basic properties holding in every hypergroup (for more details and
proofs, see for example [15], [19], [14]).

Lemma 2.7. Let G be a hypergroup and a, b, c, d ∈ G. Then:

i - (1)−1 = 1;

ii - (a−1)−1 = a;

iii - c ∈ ab if and only if c−1 ∈ a−1b−1;

iv - (ab)−1 = b−1a−1.

Definition 2.8. Let G and H be hypergroups. A map f : G → H is a morphism if for
all a, b, c ∈ G:

i - c ∈ a ∗ b⇒ f(c) ∈ f(a) ∗ f(b);
ii - f(a−1) = (f(a))−1;

iii - f(1) = 1.

The morphism f is full if for all a, b ∈ G, f(a ∗ b) = f(a) ∗ f(b).

There is another description of hypergroups due to M. Marshall2:

Definition 2.9 ([10]). A hypergroup is a quadruple (G,Π, r, i) where G is a non-empty
set, Π is a subset of G × G × G, r : G → G is a function and i is an element of G
satisfying:

i - If (x, y, z) ∈ Π then (z, r(y), x) ∈ Π and (r(x), z, y) ∈ Π.

ii - (x, i, y) ∈ Π if and only if x = y.

iii - If ∃ p ∈ G such that (u, v, p) ∈ Π and (p, w, x) ∈ Π then ∃ q ∈ G such that
(v, w, q) ∈ Π and (u, q, x) ∈ Π.

A hypergroup is said to be commutative or abelian if

iv - (x, y, z) ∈ Π if and only if (y, x, z) ∈ Π.

For multi-structures/hyper-structures, there are various sorts of “substructure”
that one can consider. For simplicity, we will deal only with subhypergroups and full
subhypergroups, defined below. For more details, we suggest [15], [14], [6] or even [11].

2This is a first-order theory with axioms of the form ∀∃.
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Definition 2.10. If G,H are hypergroups with H ⊆ G, we say H is a subhypergroup
(or just subgroup) of G if the inclusion H ↪→ G is a morphism. We say H is a full
subhypergroup (or just full subgroup) of G if the inclusion H ↪→ G is a full morphism.
Note that in the group case, all these prescriptions coincide.

Let φ : G→ H be a morphism of hypergroups. Denote

Ker(φ) := {g ∈ G : φ(g) = 1} and Im(φ) = {h ∈ H : h = φ(g) for some g ∈ G}.

Then Ker(φ) is a full subgroup of G and Im(φ) is a subgroup of H , but Im(φ) (with the
multi operation inherited from H) is not a full subgroup in general.

Definition 2.11 (Generated Subgroup). Let G be a hypergroup and A ⊆ G. We define
the subgroup generated by A, notation ⟨A⟩ by

⟨A⟩ :=
⋂
{H : H ⊆ G is a subgroup and A ⊆ H}.

Let G be a hypergroup and a ∈ G. For n ≥ 0, denote an := a · ... · a (n times) and
a−n := (a−1)n.

Proposition 2.12. Let G be a hypergroup and a ∈ G. Then

⟨a⟩ =
⋃
{ai1 · ... · ain : ij ∈ Z, j = 1, ..., n, n ∈ N}.

Proof. Denote

((a)) :=
⋃
{ai1 · ... · ain : ij ∈ Z, j = 1, ..., n, n ∈ N}.

In fact, 1 ∈ a · a−1 ∈ ((a)) and if x ∈ ai1 · ... · ain then x−1 ∈ a−in · ... · a−i1 ∈ ((a)) (use
item (iii) of Lemma 2.7 and induction). Finally, let x ∈ ai1 · ... ·ain and y ∈ ain+1 · ... ·aim .
Then

xy ∈ (ai1 · ... · ain)(ain+1 · ... · aim) = ai1 · ... · ain · ain+1 · ... · aim ⊆ ((a)).

Then ((a)) is a subgroup and since a ∈ ((a)), we have ⟨a⟩ ⊆ ((a)). Moreover, if H ⊆ G

is a subgroup and a ∈ H , then a−1 ∈ H . Hence ((a)) ⊆ H and ((a)) ⊆ ⟨a⟩.

For abelian hypergroups, there is an easier description of ⟨a⟩:
Proposition 2.13. Let G be an abelian hypergroup and a ∈ G. Then

⟨a⟩ :=
⋃
i,j∈Z

{ai · a−j}.
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Proof. Let ai1 · ... ·ain with i1, ..., in ∈ Z. Write {i1, ..., in} := {s1, ..., sk,−tk+1, ...,−tn}
with s1, ..., sk and tk+1, ..., tn non negative integers. Then

ai1 · ... · ain = as1+...+sk · a−(tk+1+...+tn).

Of course, in the abelian case, for i ≥ j we have ai−j ⊆ ai · a−j but the equality
does not hold in general. If A ⊆ G, adapting the argument used in Proposition 2.12 we
get

⟨A⟩ =
⋃
{ai11 · ... · ainn : aj ∈ A, ij ∈ Z, j = 1, ..., n, n ∈ N}.

Let (G,+, 0) be an abelian hypergroup and H ⊆ G be a full subgroup. Denote

G/H := {a+H : a ∈ G}

and [a] := a+H , a ∈ G. Define −[a] := [−a] and

[a] + [b] := {[d] : d′ ∈ a′ + b′ for some [d′] = [d], [a′] = [a], [b′] = [b]}.

In fact, such prescriptions does not depend of the choice of representatives.

Theorem 2.14. Given the notations above, (G/H,+.−, [0]) is an abelian hypergroup.
Moreover we have a morphism π : G→ G/H .

Proof. In fact, if [a] ∈ [0] + [b], then a′ ∈ x + b′ with x ∈ H , [a′] = [a], and [b′] = [b].
Then b′ ∈ a′ − x,

a′ +H ⊆ b′ + x+H = b′ +H and b′ +H ⊆ a′ − x+H = a′ +H.

Hence [a] = [a′] = [b′] = [b]. Since 0 ∈ a − a we have [0] ∈ [a] + [−a] = [a] − [a].
Now, let [x] ∈ ([a] + [b]) + [c]. Then [x] ∈ [d] + [c] for some [d] ∈ [a] + [b]. Moreover
x′ ∈ d′ + c′ for some d′ ∈ a′ + b′ with [x′] = [x], [a′] = [a], [b′] = [b], [c′] = [c] and
[d′] = [d]. In this case, x′ ∈ (a′ + b′) + c′ = a′ + (b′ + c′), and then, x′ ∈ a′ + e with
e′ ∈ b′ + c′. Hence [x] ∈ [a] + [e] with [e] ∈ [b] + [c], and [x] ∈ [a] + ([b] + [c]), which
means ([a] + [b]) + [c] ⊆ ([a] + [b]) + [c]. With an analogous argument we conclude
([a] + [b]) + [c] ⊆ ([a] + [b]) + [c].

If H ⊆ G is not a full subgroup, we define G/H := G/⟨H⟩, where ⟨H⟩ is the
subgroup of G generated by H . Note that we always have an equivalence relation defined
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for a, b ∈ G by
a ≡H b iff a− b ⊆ H.

Note that if a ≡H b then a + H = b + H but not necessarily the converse (even if H is
full).

3. Categorical Properties of Hypergroups

Now we begin the investigation of categorical properties in the category of hypergroups.
We start with the entire category of hypergroups (i.e, without supposing full morphisms)
and gradually introduce subcategories (abelian hypergroups, abelian hypergroups with
full morphisms, etc) in order to obtain stronger results.
Proposition 3.1. The category of hypergroups has a terminal object.

Proof. Consider 1 = {1} the trivial hypergroup. For any hypergroup G we define a
function ! : G→ 1 by !(g) = 1 for all g ∈ G. This is a morphism of hypergroups since:

1. Take c ∈ a ∗ b, for a, b ∈ G. We have !(c) ∈!(a)∗!(b) because 1 ∈ 1 ∗ 1.
2. !(r(a)) = 1, for all a ∈ G and r(!(a)) = r(1) = 1.
3. !(1) = 1.

And ! is the unique morphism of hypergroup with codomain 1. If φ : G → 1 is another
morphism of hypergroups, then φ(g) = 1 =!(g) since 1 is the unique element of 1.

Proposition 3.2. The category of hypergroups has an initial object.

Proof. We will show that the trivial hypergroup 1 is an initial object in the category of
hypergroups. For any hypergroup G, define ϕ : 1 → G by ϕ(1) = 1. So the third
condition is automatically satisfied. Since the unique element in {1} is an identity element
1, the other two conditions are easy to check:

1. 1 ∈ 1 ∗ 1 implies ϕ(1) ∈ ϕ(1) ∗ ϕ(1).
2. ϕ(r(1)) = ϕ(1) = 1 = r(1) = r(ϕ(1)).

Observe that any other morphism ψ : 1 → G of hypergroups must satisfy the third
condition ψ(1) = 1 so ψ = ϕ. In other words, ϕ is unique.

Since 1 is initial and terminal, we conclude:
Corollary 3.3. The category of hypergroups has a zero object.

The product in the category of hypergroups is obtained in a very similar way
to the product in the category of groups: if {Gi}i∈I is a family of hypergroups, for
(ai)i∈I , (bi)i∈I ∈

∏
i∈I Gi we define

(ai)i∈I ∗ (bi)i∈I =

{
(ci)i∈I ∈

∏
i∈I

Gi : ci ∈ ai ∗ bi for all i ∈ I

}
.
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In fact, (
∏

i∈I Gi, ∗, (1)i∈I) is a hypergroup. If we take, for each i ∈ I , the
morphism πi :

∏
i∈I Gi → Gi given by the rule πi(ai)i∈I := ai, we have that πi is

a full surjective morphism and (
∏

i∈I Gi, πi) satisfies the universal property of products
for the category of hypergroups. Moreover, adapting the usual construction of filtered
limits in the category of groups (see for instance, [16] or [3]) we get the filtered limits for
hypergroups under a technical hypothesis.

Definition 3.4. A hypergroupG has the weak cancellation property if for all a, b, c ∈ G,
1 ∈ (ba−1)(ac) imply b = c−1.

Proposition 3.5. Let I be a directed poset and {Gi, φij, I} be a projective system of
hypergroups. If, for all i ∈ I , Gi has the weak cancellation property then there exist the
filtered limit of {Gi, φij, I}.

Proof. Let I be a directed poset and {Gi, φij, I} be a projective system of hypergroups.
In other words, we have, for each i ≥ j in I , a morphism φij : Gi → Gj such that for all
i ≥ j ≥ k the following diagram commute:

Gi
φik //

φij   

Gk

Gj

φjk

>>

Now, let

G :=

{
(gi)i∈I ∈

∏
i∈I

Gi : φij(gi) = gj for all i ≥ j

}
and for (gi)i∈I , (hi)i∈I ∈ G, define

(gi)i∈I ∗ (hi)i∈I :=
[
(gi)i∈I ∗∏i∈I Gi

(hi)i∈I
]
∩G.

We have that (G, ∗) is a subgroup of
∏

i∈I Gi (not full in general). For this, first note that
(1i)i∈I ∈ G and if (gi)i∈I ∈ G, since for all i ≥ j we have φij(gi) = gj , then for all i ≥ j

we have φij(g
−1
i ) = g−1

j , and (g−1
i )i∈I ∈ G. Moreover, by the very definition of ∗ on G

we get that
(hi)i∈I ∈ (1i)i∈I ∗ (gi)i∈I iff gi = 1i for all i ∈ I.

Now let (pi)i∈I ∈ (gi)i∈I ∗ (hi)i∈I . Then pi ∈ gi ∗ hi for all i ∈ I and for i ≥ j,
φij(pi) = pj . But then, gi ∈ pi ∗ h−1

i for all i ∈ I and φij(h
−1
i ) = h−1

j for all i ≥ j (since
(hi)i∈I ∈ G). Then (gi)i∈I ∈ (pi)i∈I ∗ (h−1

i )i∈I . We use a similar argument to prove that
(hi)i∈I ∈ (g−1

i )i∈I ∗ (pi)i∈I . Finally, let

(xi)i∈I ∈ [(ai)i∈I ∗ (bi)i∈I ] ∗ (ci)i∈I .
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Then (xi)i∈I ∈ (ei)i∈I ∗ (ci)i∈I for some (ei)i∈I ∈ (ai)i∈I ∗ (bi)i∈I . Hence xi ∈ ei ∗ ci
with ei ∈ ai ∗ bi for all i ∈ I , which means

xi ∈ (ai ∗ bi) ∗ ci = ai ∗ (bi ∗ ci).

Then for all i ∈ I , xi ∈ ai ∗ gi for some gi ∈ bi ∗ ci. Now, for i ≥ j we have φij(xi) = xj

and
xj ∈ φij(ai ∗ gi) ⊆ φij(ai) ∗ φij(gi) = aj ∗ φij(gj).

We also have xj ∈ aj ∗ gj , which imply x−1
j ∈ g−1

j ∗ a−1
j . Then

1 ∈ x−1
j xj ⊆ (g−1

j ∗ a−1
j )(aj ∗ φij(gi)).

Since Gi has the weak cancellation property we have g−1
j = φij((gi))

−1, which means
gj = φij(gi)). Then (gi)i∈I ∈ G and we have

[(ai)i∈I ∗ (bi)i∈I ] ∗ (ci)i∈I ⊆ (ai)i∈I ∗ [(bi)i∈I ∗ (ci)i∈I ].

With a similar argument we conclude the reverse inclusion and then G is a subgroup of
the product. Denote by πi :

∏
i∈I Gi → Gi the natural projection and ψi := πi|G. We have

that {G,ψi} is compatible with {Gi, φij, I} in the sense that, for all i ≥ j, φij ◦ ψi = ψj .
Now, suppose that {H, ρi} is compatible with {Gi, φij, I} and define

ρ : H →
∏
i∈I

Gi

by the rule ρ(x) = (ρi(x))i∈I . We have that ρ is a morphism and since {H, ρi} is
compatible, for all x ∈ H and all i ≥ j in I we have φij(ρi(x)) = ρj(x). This means that
(ρi(x))i∈I ∈ G and Im(ρ) ⊆ G. Then we can consider ρ : H → G, which proves that in
fact,

G = lim←−
i∈I

Gi.

If f : G → H is a morphism, we already know that Ker(f) is a full subgroup of
G. It is straightforward to verify that (Ker(f), ι) satisfies the universal property of kernel
for the category of hypergroups (here ι : Ker(f) → G is the inclusion morphism, which
is full). Then we have the following:
Proposition 3.6. Every morphism in the category of hypergroups has a kernel.

Proof. Let f : G → H be a morphism. We already know that Ker(f) is a full subgroup
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of G. Suppose that E is another hypergroup and t : E → G is a morphism such that
0 ◦ t = f ◦ t.

E t // G
f //

0
// H

We have to show that there is a unique morphism t : E → Ker(f) commuting the
following diagram:

E

t

��

t

��
Ker(f) ι // G

f //

0
// H

where ι : Ker(f) → G is the (full) inclusion morphism. Since 0 ◦ t = f ◦ t, for all
x ∈ G we have f(t(x)) = 0 and t(x) ∈ Ker(f). Hence we can consider t : E → Ker(f)
and take t = t. If t′ : E → Ker(f) is such that t = ι ◦ t′, then for all x ∈ G we have
t(x) = ι(t′(x)) = t′(x), and thus t′ = t.

Remark 3.7. Every kernel is a monomoprhism since it is an equalizer. Remind that
in the category of groups, we always can obtain the equalizer Eq(f, g) from the kernel
Ker(f − g), but for hypergroups this property does not hold, because it is not true that
f ◦ h = g ◦ h if and only if (f − g) ◦ h = 0, i.e, there is not “only one morphism f − g”.

Proposition 3.8. Let f : G → H be a full morphism of hypergroups. Then f is injective
if and only if Ker(f) = {1}.

Proof. (⇒) Follow immediately. For (⇐), let a, b ∈ G such that f(a) = f(b). Then
1 ∈ f(a) ∗ f(b)−1 and since f is full we have 1 ∈ f(a) ∗ f(b)−1 = f(a ∗ b−1). So there
exist c ∈ a ∗ b−1 such that f(c) = 1. Then c ∈ Ker(f) = {1}. So a = (b−1)−1 = b.

Next, we restrict our attention to the category of abelian hypergroups in order to
take quotients and analyze cokernels and coproducts.
Proposition 3.9. Every full morphism in the category of abelian hypergroups has a
cokernel.

Proof. If f : G → H is a full morphism then Im(f) is a full subgroup (by the very
definition of full morphisms). Let π : H → H/Im(f) be the canonical projection.
Suppose that E is another abelian hypergroup and t : H → E is a morphism such that
t ◦ 0 = t ◦ f .

G
f //

0
// H

t // E
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We have to show that there exists a unique morphism t : H/Im(f) → E commuting the
following diagram:

G
f //

0
// H

t

��

π // H/Im(f)

t

��
E

Define3 t([x]) := t(x). If [x] = [y] then x + Im(f) = y + Im(f) and x + r = y + s for
some r, s ∈ Im(f), saying, r = f(r0) and s = f(s0). Since t ◦ 0 = t ◦ f we have

t(x+ r) ⊆ t(x) + t(r) = t(x) + t(f(r0)) = t(x) + 0 = t(x).

Then t(x+ r) = t(x). Similarly we have t(y + s) = t(y). Then

t(x) = t(x+ r) = t(y + s) = t(y)

and we prove that [x] = [y] imply t(x) = t(y). In particular the rule t does not depend
on the choice of representatives. Now let [d] ∈ [x] + [y]. Then there exists d′ ∈ x′ + y′

with [d′] = [d], [x′] = [x] and [y′] = [y]. Hence t(d′) ∈ t(x′) + t(y′) which implies
t(d) ∈ t(x) + t(y) and then, t[d] ∈ t[x] + t[y]. Therefore, t is a morphism. By the
construction we have t = t ◦ π. If g : H/Im(f) → E is another full morphism such that
t = g ◦ π, we have g = t (basically because π is surjective).

Moreover, adapting the usual construction of directed colimits in the category of
abelian groups (see for instance, [16] or [3]) and the argument used in [14] we get the
following:

Proposition 3.10. The category of abelian hypergroups has directed colimits.

Proof. Let I be a directed poset and {Gi, φij, I} be an injective system of hypergroups.
In other words, we have for all i ≤ j in I a morphism φij : Gi → Gj such that for all
i ≤ j ≤ k the following diagram commute:

Gi
φik //

φij   

Gk

Gj

φjk

>>

Now, let U =
⋃̇

i∈IGi (the disjoint union of Gi’s). For xi ∈ Gi and xj ∈ Gj , we say that

3Remember that [x] := x+ Im(f).
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xi ∼ xj if there exists k ≥ i, j in I such that φik(xi) = φjk(xj). This is an equivalence
relation. For x, y ∈ U/ ∼, define

x+ y := {z : there exist z′ ∼ z, x′ ∼ x, y′ ∼ y with z′ ∈ φik(x
′) + φjk(y

′), k ≥ i, j}.

We prove that (U/ ∼,+, 0) is an abelian hypergroup. Of course, + is commutative and
if y ∈ 0 + x, then y′ ∈ φik(0) + φjk(x

′) = 0 + φjk(x
′) = φjk(x

′) for some y′ ∼ y and
x′ ∼ x. Then y′ ∼ φjk(x

′) ∼ x′ ∼ x (because φkk = idAk
) and y ∼ x, which means

y = x.

Now let d ∈ x + y. Then d′ ∈ φik(x
′) + φjk(y

′) for some x′ ∼ x, y′ ∼ y and
d′ ∼ d. Since Ak is an abelian hypergroup, we have

φik(x
′) ∈ d′ − φjk(y

′) = φkk(d
′)− φjk(y

′),

which means φik(x′) ∈ d′ − φjk(y′), which turns out to be x ∈ d− y.

Finally, let d ∈ (x + y) + z. Then d ∈ e + z for some e ∈ x + y. Then, we have
d′ ∼ d, e′ ∼ e, z′ ∼ z with d′ ∈ φik(e

′) + φjk(z
′) and e′′ ∼ e, x′ ∼ x, y′ ∼ y with

e′′ ∈ φpr(x
′) + φqr(y

′). Now, since e′′ ∼ e′ ∼ φik(e
′), we can choose t ≥ i, j, k, p, q, r

such that φkt(φik(e
′)) = φrt(e

′′). Then

φkt(d
′) ∈ φkt(φik(e

′)) + φkt(φjk(z
′)) and φrt(e

′′) ∈ φrt(φpr(x
′)) + φrt(φqr(y

′)).

Then
φkt(d

′) ∈ [φrt(φpr(x
′)) + φrt(φqr(y

′))] + φkt(φjk(z
′)).

Since At is a hypergroup, we have

[φrt(φpr(x
′))+φrt(φqr(y

′))]+φkt(φjk(z
′)) = φrt(φpr(x

′))+[φrt(φqr(y
′))+φkt(φjk(z

′))].

Then φkt(d
′) ∈ φrt(φpr(x

′)) + f for some f ∈ φrt(φqr(y
′)) + φkt(φjk(z

′)). This means
φkt(d′) ∈ φrt(φpr(x′)) + f with f ∈ φrt(φqr(y′)) + φkt(φjk(z′)) which turns out to be
d ∈ x+ f with f ∈ y + z, and we prove that

(x+ y) + z ⊆ x+ (y + z).

The other inclusion follows by a similar argument.

Thus U/ ∼ is an abelian hypergroup which we will denote by G := U/ ∼. For
each gi ∈ Gi, define ψi : Gi → G by ψi(gi) = gi. This is a morphism and {Gi, ψi} is
compatible with {Gi, φij, I} in the sense that for all i ≤ j, ψjφij = ψi.
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Now suppose that {H, ρi} is compatible with {Gi, φij, I}. We define a morphism
ρ : G → H by the following rule: for a ∈ U with a = x for some x ∈ Gi, define
ρ(x) = ρi(x). Then ρ is the unique morphism such that ρψi = ρi for all i ∈ I . So we
have

G = lim−→
i∈I

Gi.

Let {Gi}i∈I be a family of abelian hypergroups. Define

⊕
i∈I

Gi :=

{
(ai)i∈I ∈

∏
i∈I

Gi : thre exist n0 such that ci = 0 for all i ≥ n0

}
.

In fact,
⊕

i∈I Gi is a full subgroup of (
∏

i∈I Gi, ∗, (1)i∈I). Note that
⊕

i∈I Gi is
not the coproduct in general, but we use it to define a weak biproduct:

Definition 3.11. Let C be a category with zero morphisms. The weak biproduct of a
finite collection of objects A1, ..., An in C is an object A1 ⊕ · · · ⊕ An together with:

• projection morphisms pk : A1 ⊕ · · · ⊕ An → Ak

• injection morphisms ιk : Ak → A1 ⊕ · · · ⊕ An

such that

• pk ◦ ιk = idAk

• pl ◦ ιk = 0, the zero morphism Ak → Al, for k ̸= l4;

• (A1 ⊕ · · · ⊕ An, p1, ..., pn) is a product;

• idA1⊕···⊕An ⊆ i1 ◦ p1 + · · ·+ in ◦ pn.

Lemma 3.12. The category of abelian hypergroups has weak biproducts.

4. Hyperbolic Hypergroups

In the context of abstract theories of quadratic forms, there is a certain kind of
multi-algebra that arises naturally, the hyperbolic hyperrings/hyperfields (see, for
instance, [18] and [17]). Here, we generalize this for hypergroups.

Definition 4.1. A hypergroup G is hyperbolic if for all a ∈ G \ {1}, a ∗ a−1 = G. The
category of hyperbolic hypergroups and its morphisms will be denoted by HHG.

4In a category with a zero object 1, the zero morphism 0AB : A → B between two objects A,B is the
unique morphism that factors through 1.
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Every hyperbolic hypergroup G is rooted in the sense that if a, b ∈ G \ {1} then
a, b ∈ a ∗ b. In fact, a hypergroup G if rooted if and only if is hyperbolic. In fact, if
a, b ∈ a ∗ b for all a, b ∈ G \ {1} then b ∈ a ∗ a−1. On the other hand, if a ∗ a−1 = G

for all a ∈ G \ {1}, then for all a, b ∈ G \ {1} we get b ∈ a−1 ∗ a and a ∈ b−1 ∗ b. This
implies a ∈ a ∗ b and b ∈ a ∗ b. Then we use “hyperbolic” and “rooted” as synonyms.

Let G1 and G2 be two hyperbolic hypergroups. We define a new hyperbolic
hypergroup (G1 ×h G2, ∗, r, (1, 1)) by the following: the adjacent set of this structure
is

G1 ×h G2 := (G1 \ {1} ×G2 \ {1}) ∪ {(1, 1)}.

For (a, b), (c, d) ∈ G1 ×h G2 we define

r(a, b) = (r(a), r(b)),

(a, b) ∗ (c, d) = {(e, f) ∈ G1 ×G2 : e ∈ a ∗ c and f ∈ b ∗ d} ∩ (G1 ×h G2). (1)

In other words, (a, b) ∗ (c, d) is defined in order to avoid elements of G1 × G2 of type
(x, 1), (1, y), x, y ̸= 1. Using the very same argument of Theorem 2.17 in [17] we obtain
the following.

Theorem 4.2 (Product of Hyperbolic Hypergroups). Let G1, G2 be hyperbolic
hypergroups and G1 ×h G2 as above. Then G1 ×h G2 is a hyperbolic hypergroup and
satisfy the Universal Property of product for G1 and G2.

In order to avoid confusion and mistakes, we denote the binary product in HHG
by G1 ×h G2. For hyperbolic hypergroups {Gi}i∈I , we denote the product of this family
by

h∏
i∈I

Gi,

with underlying set defined by

h∏
i∈I

Gi :=

(∏
i∈I

Ġi

)
∪ {(1i)i∈I}

and operations defined by rules similar to the ones defined in 1. If I = {1, ...n}, we
denote

h∏
i∈I

Gi =
n∏

i=1
[h]

Gi.

Of course, G1×hG2 ̸= G1×G2 so in the category of hyperbolic hypergroups we
do not necessarily have coproducts. We observe that in HHG we have nice properties for
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morphisms, such as the following.

Theorem 4.3. Let G be a hyperbolic hypergroup. There is a bijection between G and
morphisms φ : Q2 → G.

Proof. For a ∈ G, we have a morphism φa : Q2 → G given by the rule

φa(k) =


a if k = 1

1 if k = 0

−a if k = −1

.

Now, define Φ : G → HHG(Q2, G) by the rule Φ(a) = φa. Then Φ is the desired
bijection.

Theorem 4.4. Let f : G→ H be a morphism in the category of hyperbolic hypergroups.
Then f is a mono if and only if f is injective.

Proof. (⇒) Let φa as in Theorem 4.3. Of course, the fact of φa be a morphism for a ̸= 1

is consequence of G be a hyperbolic hypergroup. Moreover φa = φb if and only if a = b.
Now let a, b ∈ G with a ̸= b. If f(a) = f(b) then f ◦ φa = f ◦ φb. Since f is mono we
have φa = φb, which means a = b. Hence f is injective.
(⇐) Let f injective and g1, g2 : A → G such that f ◦ g1 = f ◦ g2. Then for all x ∈ A,
f(g1(x)) = f(g2(x)). Since f is injective this means g1(x) = g2(x) for all x ∈ A and
then g1 = g2.

Another interesting property is regarding the kernels.

Proposition 4.5. Let f : G→ H be a morphism in HHG. Then

Ker(f) = {0} or Ker(f) = G.

Proof. If fact, if a ̸= 0 is in Ker(f) then −a ∈ Ker(f). Since Ker(f) is a full subgroup
of G, we have a− a ⊆ Ker(f) and since G is hyperbolic, G = a− a ⊆ Ker(f).

Using Proposition 3.8 we get the following useful characterization:

Corollary 4.6. Let f : G→ H be a full morphism in HHG. Then f = 0 or f is injective.
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5. Hyper-abelian Categories

In this Section we seek for a generalization of the notion of an abelian category to
encompass hyper algebraic structures. Let G,H be hypergroups and denote

Hom(G,H) := {f : G→ H : f is a morphism}.

For f, g ∈ Hom(G,H), define

f ∗ g := {h ∈ Hom(G,H) : h(x) ∈ f(x) ∗ g(x) for all x ∈ G}.

For all x ∈ G, and any morphism f ∈ Hom(G,H)

r(f)(x) = f(x)−1

and
1(x) = 1

That is, the identity in Hom(G,H) is the constant morphism that always gives the identity
of H .
Remark 5.1. A non-associative group is the same as a quasigroup with (two-sided)
identity element (or a invertible loop). When the multivalued operation ∗ of the
hypergroup does not satisfies the associativity rule, we will call it nonassociative
hypergroup.

Lemma 5.2. With the above definition, (Hom(G,H), ∗, r, 1) is a nonassociative
hypergroup.

Proof. Let h, f, g ∈ Hom(G,H) and x ∈ A

i - If h ∈ f ∗ g, then h(x) ∈ f(x) ∗ g(x). Since H is hypergroup:

f(x) ∈ h(x) ∗ (g(x))−1 = h(x) ∗ r(g)(x) implies f ∈ h ∗ r(g)

g(x) ∈ (f(x))−1 ∗ h(x) = r(f)(x) ∗ h(x) implies g ∈ r(f) ∗ h

ii - Since H is hypergroup

g ∈ 1 ∗ f iff g(x) ∈ 1(x) ∗ f(x) = 1 ∗ f(x)

iff g(x) = f(x)

iff f = g
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Now we explain why the associativity does not hold in general: let d ∈ (f ∗g)∗h.
Then d ∈ e ∗ h for some e ∈ f ∗ g. This means that for all x ∈ G, d(x) ∈ e(x) ∗ h(x) and
e(x) ∈ f(x) ∗ g(x). Then

d(x) ∈ (f(x) ∗ g(x)) ∗ h(x) = f(x) ∗ (g(x) ∗ h(x)).

Hence, there is a function w : G→ H such that

d(x) ∈ f(x) ∗ w(x) and w(x) ∈ g(x) ∗ h(x) for all x ∈ G.

However, there is no reason to w be a morphism.
Definition 5.3. A category C is hyper-almost-preadditive if each Hom(G,H) in C is
a non-associative hypergroup and the composition of the morphisms is bilinear, i.e., the
map

Hom(F,G)×Hom(G,H) −→ Hom(F,H)

(f, g) 7→ g ◦ f

is such that
(g ∗ g′) ◦ (f ∗ f ′) ⊆ g ◦ f ∗ g ◦ f ′ ∗ g′ ◦ f ∗ g′ ◦ f ′

If Hom(G,H) in the above definition is a hypergroup, then we say C is a
hyper-preadditive category. From now on, a hyper-almost-preadditive category will be
called just almost-preadditive category if the context allows it. Next, we show what
remains to obtain that the category of hypergroups is an example of a almost-preadditive
category.

Lemma 5.4. Let G,H be hypergroups. For f, f ′ ∈ Hom(F,G) and g, g′ ∈ Hom(G,H)

we have the bilinearity

(g ∗ g′) ◦ (f ∗ f ′) ⊆ g ◦ f ∗ g ◦ f ′ ∗ g′ ◦ f ∗ g′ ◦ f ′

Proof. Let a ∈ g ∗ g′ and b ∈ f ∗ f ′. Now, for all x ∈ F we have b(x) ∈ f(x) ∗ f ′(x) and
a(b(x)) ∈ g(b(x)) ∗ g′(b(x)). Then

a(b(x)) ∈ g(b(x)) ∗ g′(b(x)) ⊆ [g(f(x) ∗ f ′(x))] ∗ [g′(f(x) ∗ f ′(x))]

⊆ [g(f(x)) ∗ g(f ′(x))] ∗ [g′(f(x)) ∗ g′(f ′(x))]

= (g ◦ f)(x) ∗ (g ◦ f ′)(x) ∗ (g′ ◦ f)(x) ∗ (g′ ◦ f ′)(x).
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If all these morphisms are full, then we have the equality

[g ◦ (f ∗ f ′)] ∗ [g′ ◦ (f ∗ f ′)] = g ◦ f ∗ g ◦ f ′ ∗ g′ ◦ f ∗ g′ ◦ f ′,

but we only have (g ∗ g′) ◦ (f ∗ f ′) ⊆ [g ◦ (f ∗ f ′)] ∗ [g′ ◦ (f ∗ f ′)] and the equality does
not hold in general.

Therefore:
Corollary 5.5. The category of hypergroups is hyper-almost-preadditive.

Remark 5.6. Aiming at a closer relation with abelian homological algebra we would
like to have that the category of hypergroups is hyper-preadditve, that is, the set
Hom(G,H) is a hypergroup. In the future, we may explore the consequences of the
nonassociativity in Hom(G,H) (it is possible that we should be guided by the theory
of semi-abelian categories instead of abelian categories) and other notions of morphism
between hypergroups with a different multivalued operation, hoping to Hom(G,H) be a
hypergroup.

We recall that a category is additive if it is preadditive, has a zero objects,
and has binary products[4]. So we define a hyper-almost-additive category as a
hyper-almost-preadditive that has a zero object, and binary weak biproducts.
Remark 5.7. The category of abelian hypergroups is a almost-additive-category.

We remind the categorical definition of the image of a morphism:
Definition 5.8 (Categorical Image). The categorical image of a morphism f : A→ B in
category C is a monomorphism m : I → B such that:

1. There exists a morphism e : A→ I such that f = m ◦ e;
2. If I ′ is an object in C with a morphism e′ : A→ I ′ and a mono m′ : I ′ → B such

that f = m′ ◦ e′, there is a unique morphism ϕ : I → I ′ such that m = m′ ◦ ϕ.

Proposition 5.9. In the category of hyperbolic hypergroups, if f is a full morphism, then
Im(f) is the (categorical) image.

Proof. Let f : A → B be a full morphism in the category of hypergroups. We defined
the image of f by Im(f) := {b ∈ B : b = f(a) for some a ∈ A} where we have that the
inclusion morphism i : Im(f) → B is full, since Im(f) is a full subgroup (because f is
full).
First we show that i is a monomorphism: take g, h : X → Im(f) such that i ◦ g = i ◦ h.
So i(g(x)) = i(h(x)), for all x ∈ X . Since i is the inclusion, g(x) = h(x), for all x ∈ X .
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So g = h.

Now, we show that Im(f) with the inclusion satisfies the universal property of the
categorical notion of image: take a hypergroup I with a monomorphism m : I → B

and a morphism e : A→ I such that f = m ◦ e.
For every a ∈ A, f(a) = m(e(a)). Define ϕ : Im(f) → I by ϕ(f(a)) = e(a) (which
is well defined since m is injective). If y ∈ f(b) ∗ f(c) = f(b ∗ c), then y = f(a) for
some a ∈ b ∗ c. Then e(a) ∈ e(b ∗ c) ⊆ e(b) ∗ e(c), proving that ϕ is in fact a morphism.
Moreover

m(ϕ(f(a))) = m(e(a)) = f(a) = i(f(a))

as desired.
Finally, suppose there is another ψ : Im(f)→ I such that i = m ◦ ψ. So m ◦ ψ = m ◦ ϕ
implies ψ = ϕ because m is mono.

Remark 5.10. In the category of hypergroups with full morphisms, every morphism
admits categorical image. However, if we consider the category of hypergroups with
all morphisms (full and not full), we do not know if the morphisms that admit image are
precisely the full morphisms.

Proposition 5.11. In the category of hyperbolic hypergroups, if f is a full morphism, then

Im(f) ∼= Ker(Coker(f)).

Proof. Given f : A→ B a full morphism of hypergroups, by 3.9, the morphism coker(f)

is given by the projection π : B → B/Im(f). Thus, by 3.6, Ker(Coker(f)) = Ker(π) =
{b ∈ B : π(b) = 0}. So,

b ∈ Im(f) iff b+ Im(f) = 0 iff π(b) = 0 iff b ∈ Ker(π).

Therefore, Im(f) = Ker(Coker(f)).

Definition 5.12. A pair (C,F) is a hyper-almost-abelian category if C is
hyper-almost-additive category and F is a subcategory of C satisfying the following
properties:

HA1 - Every morphism in C has kernel;
HA2 - Every morphism in F has cokernel in C;
HA3 - Every morphism in F has categorical image in F ;
HA4 - For every morphism f in F we have these isomorphisms in C:

Im(f) ∼= Ker(Coker(f)) ∼= Coker(Ker(f))
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If all these conditions hold for (C,F), we say in short that C is an abelian witness of F .

Note that in Definition 5.12 we are not requiring that F is
hyper-almost-preadditive. Also, in order to show that the category of abelian hypergroups
is an abelian witness of the category of hyperbolic hypergroups and full morphisms, we
only need to deal with the fourth property in Definition 5.12 (of course, we are using
Propositions 5.11, 3.6, and 3.9, and Lemma 5.4).

Theorem 5.13. In the category of abelian hyperbolic hypergroups every full morphism f

induces an isomorphism Ker(Coker(f)) ∼= Coker(Ker(f)).

Proof. Let f : A → B be a full morphism of hypergroups. Observe that Propostions 3.6
and 3.9 provide that Coker(Ker(f)) = A/Ker(f). By Propostion 5.11, we have that for
any a ∈ A, Im(f) = Ker(Coker(f)). Then, we consider f : A/Ker(f)→ Im(f) defined
by f([a]) = f(a), where [a] = a+Ker(f). We will show that f if a full isomorphism of
hypergroups.

First, note it does not depend of the choice of representatives: for a, b ∈ A,
suppose [a] = [b]. So, there are x, y ∈ Ker(f) such that a+ x = b+ y. Then,

a ∈ b+ y − x implies f(a) ∈ f(b+ y − x) = f(b) + f(y) + f(−x) = f(b)

It is a morphism of hypergroups: take a, b, d ∈ A such that [d] ∈ [a] + [b], then
we have d′ ∈ a′ + b′, for [a] = [a′], [b] = [b′], and [d] = [d′]. Since f is a morphism,
f(d′) ∈ f(a′) + f(b′). So

f([d]) = f([d′]) ∈ f([a′]) + f([b′]) = f([a]) + f([b])

We also have 0 = f(0) = f([0]), and f([−x]) = f(−x) = −f(x) = −f([x]).

It is surjective: Let y ∈ Im(f). Thus, y = f(x) for some x ∈ A. By definition of
f , y = f([x]).

It is injective: suppose f([a]) = f([b]). So f(a) = f(b) and then 0 ∈ f(a) −
f(b) = f(a − b), since f is full. Thus, there is x ∈ a − b such that f(x) = 0, and
x ∈ a− b implies that a ∈ b+ x. In on hand we have:

a ∈ b+ x implies a+Ker(f) ⊆ (b+ x) +Ker(f) = b+ (x+Ker(f)) ⊆ b+Ker(f)

On the other hand, x ∈ a− b implies − x ∈ b− a which implies b ∈ a− x and

b ∈ a−x implies b+Ker(f) ⊆ (a−x)+Ker(f) = a+(−x+Ker(f)) ⊆ a+Ker(f)
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where we used that −x ∈ Ker(f). Indeed, if x ∈ Ker(f) then 0 ∈ x − x implies that
f(0) ∈ f(x) + f(−x) and so 0 ∈ 0 + f(−x) = {f(−x)}.

In the same way that the category of abelian groups is the prototypical example
of an abelian category, we established that the category of abelian hypergroups (with
a convenient subcategory F) is the prototypical example of an hyper-almost-abelian
category.

Example 5.14. Since every group is a hypergroup and in abelian categories every
morphism has categorical image, by definition, we conclude that for every abelian
category A, the pair (A,A) is an hyper-almost-abelian category.

Using all previous results we conclude the following.
Example 5.15. Let HHGf be the category of hyperbolic hypergroups with full
morphisms. Then (HG,HHGf ) is an almost (hyper) abelian category.

The key argument in the proof of Theorem 5.9 is the fact that in HHGf every
monomorphism is an injective morphism. Using this we have another example of almost
(hyper) abelian category.

Example 5.16 (Idempotent Hypergroups). A hypergroup G will be called idempotent if
for all a ∈ G r(a) = a and {1, a} ⊆ a ∗ a. The category of idempotent hypergroups and
their morphisms will be denoted by IHG.

If G is idempotent, there is a bijection between G and morphisms φ : K → G. In
fact, for a ∈ G, we have a morphism φa : K → G given by the rule

φa(k) =

a if k = 1

1 if k = 0
.

Now, define Φ : G → HHG(K,G) by the rule Φ(a) = φa. Then Φ is the desired
bijection. Using this bijection we conclude that every mono in IHG is in an injective
morphism (using a very similar argument to that used for HHG).

So, we have that every full morphism f : G → H in IHG has categorical image
(just copy the proof of Proposition 5.9) and in this case (copying the proof of Theorem
5.13), we get these isomorphisms below

Im(f) ∼= Ker(Coker(f)) ∼= Coker(Ker(f)).

Then considering IHGf as the category of idempotent hypergroups with full morphisms
we have that (HG, IHGf ) is an almost (hyper) abelian category.
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Finally, we discuss about the existence of injective objects in our framework.
Remind that in an arbitrary category C , an object I of C is injective if for every
monomorphism f : A → B and every morphism g : A → I there is a morphism
h : B → I such that h◦f = g. If C is an abelian category, this is equivalent to say that the
functor HomC(−, I) is exact, i.e., preserves short exact sequences. Moreover, if for every
object A of C, there exists a monomorphism from A to an injective object I , then we say
that C has enough injectives. The category Ab of abelian groups is an abelian category
and it is useful to have that I is injective if and only if HomC(−, I) is exact to show that
Ab has enough injectives. Furthermore, we use that the injectives in Ab are precisely the
divisible groups, in the presence of Zorn’s Lemma.

For hypergroups, we have to be careful because a short exact sequence of
hypergroups 0 → X

f−→ Y
g−→ Z → 0 must require that f is full so that

Im(f) = Ker(Cokerf) exists. Besides, when we apply the functor Hom(−, I) for
some hypergroup I , we obtain a sequence Hom(Z, I)

−◦g−−→ Hom(Y, I)
−◦f−−→ Hom(X, I)

that is not anymore a sequence of hypergroups, and now we must have that − ◦ g
is full to consider its image and be able to study the exactness of Hom(−, I) for I
injective or not. Moreover, we need a general better understanding of exact functors,
and exact sequences before considering the study of injective objects, and analyze when a
hyper-almost-abelian category has enough injectives. Additionally, in the case of abelian
hypergroups, we may investigate an adequate notion of divisible hypergroups.

6. Remarks and Future Work

The formulation of abelian categories by Grothendieck in [8] provided equal treatment
for distinct (co)homology theories, such as sheaf and group cohomologies. Our
aim is to provide a general framework for dealing with cohomology of sheaves over
hypergroups/hyperrings. By doing so, we would contribute to advancements in Algebraic
Geometry. For instance, the étale cohomology of a sheaf over a scheme is defined using
the right derived functors of the section functor, which exist because the corresponding
sheaf category is abelian with enough injectives. A scheme is a locally ringed space,
consisting of a pair (X,OX) where X is a topological space and OX is a sheaf of rings
(the structure sheaf ), satisfying certain conditions. In the case of hypergroups, we believe
that the corresponding sheaf category will not be abelian since the category of hyperrings
is not preadditive, but rather hyper-almost-abelian. Thus, our approach would allow for
the definition of étale cohomology of a sheaf over a hyper scheme. Sheaves of hyperrings
have been used in the context of Algebraic Geometry [9] and Abstract Quadratic Forms
Theories [14].

Furthermore, the theory of (co)homology for hyper-almost-abelian categories that
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we are proposing will be of interest for other types of cohomology over hyperstructures,
such as hypergroup cohomology or Hochschild cohomology of hyperalgebras. In both
cases, having an appropriate notion of module over hypergroups and hyperrings, similar
to the definition in [1], is an important step.

Our notion of almost-preadditive category heavily relies on the structure of the
set of morphisms in Hom(G,H), where G and H are hypergroups. It should be noted
that there are different choices for morphisms between G and H , such as the set of
m.w-homomorphisms proposed in [1]. Different choices of morphisms and multivalued
operations will result in different properties for the set Hom(G,H), making a careful
study of the various possibilities necessary. Additionally, the notion of an almost-abelian
category that we introduced is a pair (C,F) where C serves as an abelian witness for the
subcategory F . In our case, C represents the category of abelian hypergroups, and F
represents the category of full hyperbolic hypergroups. However, we believe that other
subcategories F could also be “abelian” under the witness of C, particularly the category
of full hypergroups (FHGr). Nevertheless, since we were unable to show that every
monomorphism in FHGr is an injective full morphism, we do not have Proposition 5.9
for FHGr. Moreover, instead of full morphisms, one could consider the notions of strong
and ideal morphisms, as available in [15].

We also observe that the subcategory F corrects the behavior of cokernels in C,
while C corrects the behavior of coproducts inF . To ensure the existence of cokernels, we
utilize full morphisms. Our focus on hyperbolic hypergroups is due to the well-behaved
nature of their corresponding category (for instance, we have proven that morphisms
of hyperbolic hypergroups are monic exactly when they are injective). However, the
category of full hyperbolic hypergroups by itself is not a suitable candidate for being
a type of unary almost abelian category, as the binary coproducts do not coincide with
the binary products. Given this perspective, we may consider a dual definition of
hyper-almost-abelian categories and explore concrete examples.

Nevertheless, we believe that we are not far from developing a hyper (almost)
abelian homological algebra. It should be noted that if C and C ′ are abelian categories
with C having enough injectives, then there exist right derived functors of a left-exact
functor F : C → C ′ [20, Section 2.5]. In other words, under these conditions, we have
the basic ingredients for developing a cohomology theory. Therefore, a crucial next step
is to study which categories of hyperstructures have enough injectives and determine if
right derived functors still exist in the context of hyper-almost-abelian categories, rather
than abelian categories.

Another course of action for future works is to understand if our notion of
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hyper-preadditive category can be see as an enriched category, adapting the definition
of enriched category. Furthermore, since we have multiple possibilities of morphism
between hypergroups, providing distinct properties to the set of morphisms Hom(G,H),
it is possible to study categories enriched not by one but by multiple categories.

Finally, we would like to reiterate that we have asserted that the category of
hypergroups does not necessarily have coproducts, nor is it preadditive, because the
binary operation in (Hom(G,H), ∗, r, 1) is nonassociative. Recently, in [12], the
authors provided counterexamples that prove that their category of hypergroups also lacks
coproducts and is not preadditive (refer to Theorems 4.20 and 4.23). It is important to note
that our categories of hypergroups are distinct, as they have different morphisms. In the
future, we plan to investigate whether their counterexamples can be applied to our case.

7. Acknowledgments

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001. Ana Luiza Tenório is funded by CAPES.
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