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2. Introduction

Algebraic K-theory originated in the late 1950s as a generalization by Alexander
Grothendieck (1928-2014) of the famous Riemann-Roch Theorem. Roughly speaking,
Grothendieck associated a group K(X) with each X from some family of algebraic
spaces, thence recovering the classical Riemann-Roch Theorem as a special case of a
result involving K-groups.

Afterwards, Friedrich Hirzebruch (1927-2012) and Michael Atiyah (1929-2019)
realized that Grothendieck’s ideas could be applied to the world of Algebraic
Topology. The resulting K-theory of topological spaces, referred to as topological
K-theory, proved to be quite powerful. For example, some of its initial achievements
include determining the maximum number of linearly independent vector fields on
spheres, a classification theorem for real division algebras, and the Atiyah-Singer Index
Theorem.

In this paper, we focus on the classification theorem for real division algebras.
The beauty of this topic becomes apparent to the reader, as it consists in the fact that the
techniques of topological K-theory only come into play at the end. Until the last section,
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we will establish the problem with many algebraic details, and then prove it following
[1], [4] and [5].

More precisely, in Section 3, we introduce the first definitions in the setting
of division algebras. In Section 4, we present key examples of division algebras,
providing historical notes that indicate the long-term importance of the problem of
division algebras. In Section 5, we study star-algebras to introduce the Cayley-Dickson
construction, which serves as motivation for the main theorem under consideration.
In Section 6, we present the Bott-Milnor-Kervaire Theorem and some complementary
results that play interesting roles in the current discussion. Finally, in Section 7, we
provide an overview of the proof for the desired theorem using notions of topological
K-theory.

3. First definitions

We begin this section with the elementary notion of real (division) algebra. Thence,
we fix some terminology, establish morphisms between algebras and provide elementary
facts.

Definition 3.1. Let A be a finite-dimensional real vector space and m : A × A → A
be a bilinear map. The pair (A,m) is a:

• real algebra provided that there exists a non-zero element 1 ∈ A such that
m(1, a) = m(a, 1) = a for all a ∈ A;

• real division algebra provided that it is a real algebra in which there are no zero
divisors. This means that, if a, b ∈ A are such that m(a, b) = 0, then either a = 0

or b = 0. ♢

We say that m as above is a multiplication in A. We also say that A is a real
(division) algebra, omitting its multiplication, and we write ab instead of m(a, b) for all
a, b ∈ A.

Definition 3.2. A real algebra A:

• is commutative if ab = ba for all a, b ∈ A;
• is associative if (ab)c = a(bc) for all a, b, c ∈ A;
• is alternative if a2b = a(ab) and ab2 = (ab)b for all a, b ∈ A, which is the

same, due to Emil Artin (1898-1962), as every subalgebra of A generated by two
elements being associative;

• is normed if it is equipped with a norm | · | : A → [0,∞) such that |a| |b| = |ab|
for all a, b ∈ A;

• has multiplicative inverses if there exits a−1 ∈ A such that aa−1 = a−1a = 1 for
every non-zero a ∈ A. ♢
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The term “alternative” comes from the fact that the associator

[·, ·, ·] : A×A×A → A

(a, b, c) 7→ (ab)c− a(bc)

alternates in an alternative algebra, that is, the associator changes sign under an odd
permutation of the letters a, b and c, but remains unchanged under an even permutation.
At this point, the reader may have noted a parallel between the associator and the
commutator [·, ·] : A × A → A given by [a, b] = ab − ba, which is identically zero
in a commutative algebra.

Remark 3.3. The following facts hold true.

• The absence of zero divisors is equivalent to the operations of left and right
multiplication by non-zero elements being invertible. This follows from the
Rank-Nullity Theorem.

• Every associative real algebra is an alternative real algebra. The converse is false,
as shown in Remark 4.5.

• In a normed division algebra, we have |1| = 1 since |1|2 = |1| |1| = |1|. Moreover,
a normed real algebra A is necessarily a division algebra. Indeed, if A were not a
division algebra, then, for any zero divisors a, b ∈ A, we would have the absurd
0 = |ab| = |a||b| > 0.

• An alternative real algebra with multiplicative inverses is necessarily a real
division algebra. This happens because, if ab = 0 and a is not zero, then
b = (a−1a)b = a−1(ab) = a−10 = 0.

• An alternative and commutative real algebra has multiplicative inverses if and
only if it is a division algebra. On the other hand, there exist non-commutative
alternative real division algebras without multiplicative inverses. For instance,
setting e21 = e2−1 in Table 2, we create a real division algebra such that e1 has no
multiplicative inverse, because e3 − e1 and −(e1 + e3) are, respectively, left and
right inverses for e1. ♢

Definition 3.4. Let A and B be real algebras. A linear map φ : A → B is:

• a homomorphism of real algebras if φ(1) = 1 and φ(ab) = φ(a)φ(b) for all
a, b ∈ A;

• an anti-homomorphism of real algebras if φ(1) = 1 and φ(ab) = φ(b)φ(a) for
all a, b ∈ A. ♢

Evidently, an isomorphism of real algebras is an invertible homomorphism of
algebras and an anti-isomorphism of real algebras is an invertible anti-homomorphism
of algebras.
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Remark 3.5. The following facts hold true.

• The real numbers is a subalgebra of any real algebra A by means of the injective
homomorphism

ι : R → A

α 7→ α1.

• if B is a commutative algebra, then φ : A → B is an anti-homomorphism if and
only if it is a homomorphism of algebras.

• Let A and B be real algebras and φ : A → B be a linear map such that
φ(ab) = φ(a)φ(b) for all a, b ∈ A. If φ is surjective, then it is a homomorphism of
algebras. Indeed, for all b ∈ B, there exists a ∈ A such that φ(a) = b. Therefore,

φ(1) b = φ(1)φ(a) = φ(1a) = φ(a) = b.

Analogously, b φ(1) = b. From the uniqueness of the multiplicative identity,
φ(1) = 1. A similar assertion happens to be true for anti-homomorphisms of
real algebras. ♢

Since a theory without examples is usually left aside, it is time to provide some
of them to the reader. This is done in the next section. The examples that are shown
there are the most important ones, with applications in so many branches of mathematics
that it is impossible to talk about them without saying something about their origins and
ramifications.

4. Historical examples

In this section, we present the main division algebras using the language introduced
above. After each presentation, we provide some notes on the history of the algebra
in question. The expositions are always followed by references in which the reader can
find more details.

Example 4.1. The real division algebra of the real numbers, denoted by R:

• as a vector space, is the real Euclidean one-dimensional space R1, whose elements
are real multiples of 1 ∈ R;

• as a real division algebra, has the multiplication equal to its scalar product as a
vector space. ♢

Historically speaking, it is not an easy task to choose since when the real numbers
are in Mathematics. When should one start telling the history of the real numbers? When
is it appropriate to start? Is it appropriate to start in:
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• Prehistory with the cavemen and the counting of hunts and provisions?

• Ancient Egypt with the practical problems surrounding the plantings on the Nile
margins?

• the discovery of the irrational numbers by the Pythagoreans or even with Eudoxus
and his work on incommensurability of quantities?

• the European Middle Ages with the construction of a meaning for negative
numbers as independent entities?

• somewhere else in the history of eastern civilizations?

That is not a simple question. In particular, trying to see the real numbers as
the historical evolution of the naturals, integers, rationals and irrationals is not coherent
with the historical timeline. In fact, for instance, the irrationals appeared centuries before
the negative numbers. Thus, the classical pedagogical presentation of the numerical sets
play no role in this discussion. Maybe, considering the nowadays stage of development
of Mathematics, a plausible and direct answer to that question is the first formalization
of the real numbers. Nevertheless, this is another problem: What is the first one? In
order to have a clue of the difficulties involved here, the reader can find in [10] more than
twenty formalization of the real numbers, which curiously does not begin by Dedekind’s
construction of 18721.

Example 4.2. The real division algebra of the complex numbers, denoted by C:

• as a vector space, is the real Euclidean two-dimensional space R2, whose elements
are linear combinations of the vectors of its canonical basis {1, e1};

• as a real division algebra, has the multiplication bilinearly induced by the relations
in Table 1. ♢

· 1 e1

1 1 e1
e1 e1 −1

Table 1. This table describes the complex multiplication of the vectors of the
canonical basis.

The complex numbers appeared in the context of the problem of
explicitly solving a third degree polynomial equation. The mathematicians that are
nowadays associated to this kind of equations are Girolamo Cardano (1501 - 1576)

1From our point of view, Cantor’s construction of 1873 via equivalence classes of Cauchy sequences of
rational numbers is pedagogically interesting. We think so because it not only develops notions that can be
applied in further mathematical studies (for instance, the completion of a metric space, useful in Functional
Analysis), but it also perfects the knowledge of teachers on the irrationals, which is a problematic topic in
high school education.
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and Niccolò Fontana2 (1500 - 1557). Nonetheless, the first person to solve the cubic
equation was Scipione del Ferro (1465-1526), who was a professor at the Bologna
University. After accomplishing his solution, he trusted the formula to a student of his
called Antonio Maria del Fiore (XVI-XVII). After some time, Fiore challenged Tartaglia
to a mathematical contest, for which Tartaglia rediscovered del Ferro’s formula. More
than that, Tartaglia won the competition answering all of the problems proposed by del
Fiore, while, unfortunately, this one could solve none of the problems suggested by
Tartaglia. In turn, Tartaglia told his formula without proof to Cardano, who had sworn
to secrecy. With the formula, Cardano deduced a proof. After that, he found out that
del Ferro had discovered the formula before Tartaglia. Then, he published it in his book
Ars Magna (1545). It is important to note that Cardano mentioned del Ferro as the first
author and Tartaglia as an independent solver. However, this was not enough to prevent
a novel-like contend between Cardano and Tartaglia, which is well documented in the
specific literature.

Probably, Cardano introduced the complex numbers in his book Ars Magna.
Nevertheless, it is known that Rafael Bombelli (1526 - 1572) was responsible for the
current notation

√
−1, which he named “più di meno” at the time, while he was

studying the application of the Cardano-Tartaglia Formula to the equation x3 = 15x+ 4.
Other men whose names appear in the history of complex numbers are Leonhard
Euler (1707-1783), Jean-Robert Argand (1768-1822), Carl Friedrich Gauss (1777-1855)
and William Rowan Hamilton (1805-1865). The interested reader can find more
details in [7].

Example 4.3. The real division algebra of the quaternions, denoted by H:

• as a vector space, is the real Euclidean four-dimensional space R4, whose elements
are linear combinations of the vectors of its canonical basis {1, e1, e2, e3};

• as a real division algebra, has the multiplication bilinearly induced by the relations
in Table 2, which can be easily deduced from the mnemonic diagram presented
in Figure 1. ♢

2This one is known as Tartaglia, which means “stammerer” in Italian. This nickname is due to serious
wounds in his jaw and palate, acquired during a French invasion against Venice, which left him with a
speech impediment.
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· 1 e1 e2 e3

1 1 e1 e2 e3
e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1
e3 e3 e2 −e1 −1

Table 2. This table describes the quaternionic multiplication of the vectors of the
canonical basis.

e2

e3 e1

Figure 1. The arrows in this circular diagram indicate the positive sign to obtain
the third element from the product of the other ones. For example, e3e1 = e2 and
e1e2 = e3. If we multiply two elements linked by an arrow in the opposite direction,
then we have to put a minus sign in front of the third element. For instance,
e3e2 = −e1 and e2e1 = −e3. Moreover, we have to remember that e21 = e22 = e23 = −1.
This allows us to deduce the equation e1e2e3 = −1, which is also an important
relation for the quaternions.

William Rowan Hamilton (1805-1865) was the responsible for introducing the
quaternions in Mathematics. Interestingly, before developing the quaternions, he
was involved with the complex numbers. In 1833, he completed his Pair Theory,
which was understood at the time as a new algebraic representation for the complex
numbers. Nowadays, Hamilton’s formulation of the complex numbers is their
definition in any first course. In fact, Hamilton wrote a complex number as an ordered
pair of real numbers, and defined their sum (a, b) + (c, d) = (a + c, b + d) and their
multiplication (a, b)(c, d) = (ac − bd, ad + bc). As a natural step, Hamilton tried to
extend the complex numbers to a new algebraic structure in which each element would
be composed of one real part and two distinct imaginary parts. This idea would be known
as his Triplets Theory. Inspired by the way one represents rotations in the plane using
complex numbers, Hamilton was carried into this search for his desire to represent
rotations in the three-dimensional space in a similar manner. Indeed, much of his work
after finding out the quaternions was to publicize them through the idea that they were
intrinsically linked with Geometry and Physics.
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Nevertheless, Hamilton had failed to create a new algebra for more than
ten years, until he found an answer on October 16th, 1843, while he walked with
his wife, Lady Hamilton, across the Royal Canal in Dublin, going to a meeting of
the Royal Irish Academy. In that moment, he realized that he would need three
imaginary parts instead of two. In fact, he noted that the three distinct imaginary
parts, which he named i, j and k, should verify the conditions i2 = j2 = k2 = ijk = −1.
Then, he wrote his results on the stone of the Brougham Bridge, which we unfortunately
cannot find today because of the action of time. The reader can find more interesting
details in [3] and [9].

Example 4.4. The real division algebra of the octonions, denoted by O:

• as a vector space, is the real Euclidean eight-dimensional space R8, whose
elements are linear combinations of the vectors of its canonical basis
{1, e1, e2, e3, e4, e5, e6, e7};

• as a real division algebra, has the multiplication bilinearly induced by the relations
in Table 3, which can be easily deduced from the mnemonic diagram presented
in Figure 2. ♢

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

Table 3. This table describes the octonionic multiplication of the vectors of the
canonical basis.

The octonions were first described by John Thomas Graves (1806 - 1870), who
was a Hamilton’s friend since both attended together the Trinity College in Dublin. In
fact, Graves’ interest in algebra was particularly responsible for Hamilton’s enterprise on
the complex numbers and on the triplets. At the same day of his decisive walk across
the Royal Canal, Hamilton sent a letter to Graves describing the quaternions. Graves
answered greeting him by the boldness of his idea, adding that “There is still something
in the system which gravels me. I have not yet any clear views as to the extent to which
we are at liberty arbitrarily to create imaginaries, and to endow them with supernatural
properties.” Moreover, Graves asked “If with your alchemy you can make three pounds
of gold, why should you stop there?”
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e3 e2 e5

e6

e7

e4 e1

Figure 2. The mathematical object that allowed the construction of this diagram
is known as the Fano Plane, which was developed by Gino Fano (1871 - 1952).
This is the finite projective plane with the least number of points and lines. It
has seven points and seven lines, with three points on each line and three lines
through each point. We use the arrows in this diagram to indicate the positive
sign to obtain the third element of each line from the product of the other ones.
For example, e4e6 = e3 and e7e2 = e6. If we multiply two elements linked by an
arrow in the opposite direction, then we have to put a minus sign in front of the
third element. For instance, e1e4 = −e2 and e1e7 = −e3. Further, we have to
remember that e21 = e22 = e23 = e24 = e25 = e26 = e27 = −1. Note that the expression
e1e2e3e4e5e6e7 has no meaning since O is not associative.

On December 26th, 1843, Graves wrote to Hamilton a description of a new
normed division algebra of eight dimensions, which he called octaves. On January, 1844,
Graves sent three letters to Hamilton expanding his discoveries. He even considered
the idea of a General Theory of 2m-ions and tried to construct a normed division
algebra of sixteen dimensions. On July, 1844, Hamilton answered Graves pinpointing that
the octonions were non-associative. Indeed, Hamilton invented the term “associative” at
that moment. Therefore, one can say that the octonions were essential to enlighten the
notion of associativity in Algebra. Then, Hamilton offered himself to publicize Graves’
discovery. However, since he was always engaged with the quaternions he had just
created, Hamilton kept postponing such offering.

In the meantime, the young Arthur Cayley (1821 - 1895) was thinking on
the quaternions since Hamilton announced their existence. On March, 1845, he
published an article on the Philosophical Magazine entitled “On Jacobi’s Elliptic
Functions, in Reply to the Rev. B. Bronwin; and on Quaternions”. In a significant
part of this article, Cayley tried to refute another paper, in which the author
pointed out errors in his work on elliptic functions. Apparently, Cayley gave a brief
description of the octonions in this work. In fact, Cayley’s article was so full of errors
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that it was omitted from his collected works, with the exception of the part in which he
treated the octonions.

Annoyed with being beaten to publication, Graves attached a postscript in
one of his articles who would appear on the next edition of the Philosophical
Magazine saying that he knew about the octonions since the Christmas of 1843. On
June 14th, 1847, Hamilton wrote a small note to the Transactions of The Royal Irish
Academy alleging Graves’ pioneerism. Nonetheless, it was too late, the octonions had
already entered history as Cayley’s numbers. The interested reader can find more details
in [2].

Remark 4.5. The following facts hold true.

• R is an associative and commutative real division algebra. Evidently, the proofs
of these assertions strongly depend on the formalization that one chooses for the
real numbers.

• C is an associative and commutative real division algebra.

• H is an associative and non-commutative real division algebra. The relations
e1e2 = e3 and e2e1 = −e3 prove its non-commutativity, while the associativity
follows from straightforward computations.

• O is an alternative, non-associative and non-commutative real division algebra.
In fact, it is non-commutative because e1e2 = e4 and e2e1 = −e4. Moreover, it
is non-associative because (e1e2)e3 = e4e3 = −e6 and e1(e2e3) = e1e5 = e6.
At this level, the proof of the alternance of the octonions are just cumbersome
computations. ♢

All of the division algebras of this section have multiplicative inverses. Indeed,
with the exception of the real numbers in which we have to prove the existence of
inverses by means of a formalization, all of the proofs are straightforward computations.
Furthermore, we have that all of these algebras are normed with respect to the canonical
Euclidean norm.

In the next section, we follow Graves’ path to construct as many algebras as one
would like to have. The process to be described is the Cayley-Dickson construction,
named after Arthur Cayley, whose name baptizes the octonions, and Leonard
Dickson (1874-1954), that showed in 1919 how the octonions could be obtained as a
two-dimensional algebra over the quaternions. In order to be historically fair, maybe it
would be better to say “Graves-Dickson construction” or even “Graves-Cayley-Dickson
construction”.
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5. Star-algebras and the Cayley-Dickson construction

In this section, we introduce star-algebras and some terminology that comes together.
This is done in order to talk about the Cayley-Dickson construction, which unifies the
algebras discussed above and introduces questions that send us to the classical theorems
of the following section.

Definition 5.1. A real star-algebra is a pair (A, ∗) in which:

• A is a real algebra;
• ∗ : A → A is an anti-involution of A, that is, an anti-isomorphism whose inverse

coincides with itself. ♢
Example 5.2. We have the following examples of star-algebras.

• R is a real division star-algebra with respect to the anti-involution ∗ : R → R
given by α∗ = α.

• C is a real division star-algebra with respect to the anti-involution ∗ : C → C
given by (α + α1e1)

∗ = α− α1e1.
• H is a real division star-algebra with respect to the anti-involution ∗ : H → H

given by (α + α1e1 + α2e2 + α3e3)
∗ = α− α1e1 − α2e2 − α3e3.

• O is a real division star-algebra with respect to the anti-involution ∗ : O → O
given by (α+α1e1+α2e2+α3e3+α4e4+α5e5+α6e6+α7e7)

∗ = α−α1e1−α2e2

− α3e3 − α4e4 − α5e5 − α6e6 − α7e7. ♢
Definition 5.3. A star-algebra A is nicely normed provided that:

• the sum a+ a∗ is a real multiple of 1 ∈ A for all a ∈ A;
• the products aa∗ and a∗a are equal, a positive multiple of 1 ∈ A for all non-zero
a ∈ A. ♢

Remark 5.4. The following facts hold true.

• If A is a nicely normed real star-algebra, then it has multiplicative inverses.
Indeed, it suffices to see that, for every non-zero element a ∈ A, the inverse
a−1 of a is given by

a−1 =
1

aa∗
a∗.

• If A is nicely normed and alternative, then it is a normed real algebra. In fact,
we define the norm

| · | : A → [0,∞)

a 7→
√
aa∗.

We claim that |a| |b| = |ab| for all a, b ∈ A. Indeed, since A is alternative,
we have |ab|2 = (ab)(ab)∗ = ab(b∗a∗) = a(bb∗)a∗ = aa∗ |b|2 = |a|2 |b|2 for all
a, b ∈ A. ♢
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Definition 5.5. Let (A, ∗) be a real star-algebra. The Cayley-Dickson algebra of A,
denoted by CD(A):

• as a vector space, is the direct sum A⊕A;

• as a real algebra, has the multiplication CD(A) × CD(A) → CD(A) given by
(a, b)(c, d) = (ac− db∗, a∗d+ cb);

• as a real star-algebra, has the anti-involution ∗ : CD(A) → CD(A) given by
(a, b)∗ = (a∗,−b). ♢

Proposition 5.6. Let A be a real star-algebra. The following facts hold true.

1. A is nicely normed if and only if CD(A) is nicely normed.

2. A is associative and nicely normed if and only if CD(A) is alternative and nicely
normed.

Proof. We compute to prove these facts as below.

1. If CD(A) is nicely normed, then A is also nicely normed since it is canonically
a subalgebra of CD(A). On the other hand, we assume that A is nicely normed.
If (a, b) ∈ CD(A), then

(a, b) + (a, b)∗ = (a+ a∗, 0)

is a real multiple of (1, 0) ∈ CD(A) since a + a∗ is a real multiple of 1 ∈ A.
Moreover,

(a, b)(a, b)∗ = (aa∗ + bb∗, 0) = (a∗a+ b∗b, 0) = (a, b)∗(a, b)

because aa∗ = a∗a and bb∗ = b∗b in A. Finally, if (a, b) is non-zero in CD(A),
then

(a, b)(a, b)∗ = (aa∗ + bb∗, 0)

is a positive multiple of (1, 0) ∈ CD(A) since aa∗ and bb∗ are non-negative
multiples of 1 ∈ A with at least one of them positive. These facts ensure that
CD(A) is nicely normed.

2. Suppose A is associative and nicely normed. We know that CD(A) is nicely
normed, thence we just have to prove that CD(A) is alternative. In other words,
we have to verify the two conditions presented in Definition 3.2. We leave the
second condition to the reader, but we compute to prove the first one. Indeed,
we have
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(a, b)2(c, d) = (aa− bb∗, a∗b+ ab)(c, d)

= ((aa− bb∗)c− d(a∗b+ ab)∗, (aa− bb∗)∗d+ c(a∗b+ ab))

= (aac− bb∗c− db∗a− db∗a∗, a∗a∗d− b∗bd+ ca∗b+ cab)

= (aac− bb∗c− db∗(a+ a∗), a∗a∗d− b∗bd+ c(a∗ + a)b)

= (aac− (a+ a∗)db∗ − cbb∗, a∗a∗d+ (a∗ + a)cb− db∗b)

= (aac− adb∗ − a∗db∗ − cbb∗, a∗a∗d+ a∗cb+ acb− db∗b)

= (a(ac− db∗)− (a∗d+ cb)b∗, a∗(a∗d− cb) + (ac− db∗)b)

= (a, b)(ac− db∗, a∗d+ cb)

= (a, b)[(a, b)(c, d)].

Hence, CD(A) is alternative. The converse is somehow analogous since it suffices
to reverse the logic applied to the computation above. For conciseness, we leave
the details to the reader. □

Remark 5.7. One can prove

CD(R) = C, CD(C) = H and CD(H) = O.

Thence, through the Cayley-Dickson construction, we can see that the historical algebras
descend from the real numbers. Moreover, we can continue applying such procedure to
obtain an infinite family of real algebras, each of which with dimension equal to a power
of two. For instance, we obtain the real algebra of the sedenions as the Cayley-Dickson
algebra

S = CD(O).

The sedenions are our first example of a real algebra with zero divisors. Because of that,
neither they can be normed nor they form an alternative algebra. In fact, since O and S
are nicely normed, Proposition 5.6 says that S is alternative if and only if O is associative,
but O is not associative. ♢

In general, if and algebra A has zero divisors, then CD(A) has also zero divisors.
Furthermore, if A is not alternative, then CD(A) cannot be alternative. Thus, the inductive
application of the Cayley-Dickson construction from the sedenions results in
non-alternative algebras with zero divisors. In particular, these algebras cannot be normed
because of Remark 3.3. In the next section, we explore this myriad of algebras given
by the Cayley-Dickson construction to ask questions about existence of zero divisors,
associativity and normability in algebras. As answers to these questions, many classical
results appear, some of them with proofs. However, the main result will have to wait until
the last section.
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6. Classical theorems

In the preceding section, the Cayley-Dickson construction has left a natural question
to be answered now: Is it possible to change the multiplication of the sedenions
and, more generally, of the Cayley-Dickson algebras that come after, in order to turn
them into division algebras? The answer for this question is contained in the following
result, which is due to Raoul Bott (1923-2005), John Milnor (1931-) and Michel Kervaire
(1927-2007).

Theorem 6.1 (Bott-Milnor-Kervaire Theorem). Every real division algebra has
dimension 1, 2, 4 or 8.

This result was independently proved by Bott-Milnor and by Kervaire in 1958,
according to [2, p. 150]. We will give a sketch of its proof in the last section, following
[5, pp. 59-72]. Complementarily, we have proved that there exist real division algebras
in dimensions 1, 2, 4 and 8. Indeed, we have R, C, H and O in Examples 4.1, 4.2, 4.3
and 4.4, respectively. Nevertheless, these algebras are not the only real division algebras
in these dimensions up to isomorphism (with the natural exception of the real numbers).
In fact:

• in dimension 2, we have the hyperbolic complex numbers by declaring e21 = 1.

• in dimension 4, we have the quaternionic algebra defined by declaring e21 = e2−1;

• in dimension 8, we have the Cayley-Dickson algebra of the preceding quaternionic
algebra.

Therefore, we could ask if the division algebras R, C, H and O are also special
from a strictly mathematical viewpoint. Subsequently, we present positive answers for
this question. We begin with the following technical lemma, that helps proving the
Frobenius Theorem.

Lemma 6.2. Let A be an n-dimensional real division algebra. Then

Ξ = {a ∈ A : a2 ⩽ 0}

is an (n − 1)-dimensional vector subspace of A such that A = R ⊕ Ξ. This implies that
A is generated by Ξ as an algebra.

Proof. Any element of A defines an endomorphism of A by left-multiplication, so we
can identify it with that endomorphism and speak of its trace, characteristic and minimal
polynomials. Let a ∈ A and let p(x) be its characteristic polynomial. We have from the
Fundamental Theorem of Algebra that there exists x1, . . . , xr ∈ R and z1, . . . , zs ∈ C−R
such that
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p(x) = (x− x1) · · · (x− xr)q(x, z1) · · · q(x, zs) ∈ R[x]

where q(x, z) = (x − z)(x − z̄) ∈ R[x] for any z ∈ C. We have p(a) = 0 by the
Cayley-Hamilton Theorem. Thence, since A is a division algebra, either a − xi = 0 for
some i between 1 and r, both included, or q(x, zj) = 0 for some j between 1 and s, both
included. The first possibility implies that a is a real multiple of 1 ∈ A. In turn, since
q(x, zj) is irreducible over the reals, the second one implies that q(x, zj) is the minimal
polynomial of a ∈ A. Because p(x) is real and has the same complex roots as the minimal
polynomial,

p(x) = q(x, zj)
ℓ

for a certain ℓ ∈ N. It is well-known that the coefficient of x2ℓ−1 in p(x) is tr(a) up to
sign. Therefore, if we write

q(x, zj) = x2 − 2ℜ(zj)x+ |zj|2,

then it is clear that tr(a) = 0 if and only if ℜ(zj) = 0. Equivalently, tr(a) = 0 if and only
if a2 = −|zj|2 < 0. Therefore,

Ξ = {a ∈ A : tr(a) = 0}.

In particular, Ξ is a vector subspace of A. Moreover, the Rank-Nullity Theorem says
that Ξ has dimension n− 1 since it is the kernel of tr : A → R. Finally, it is obvious that
A = R⊕ Ξ.

Theorem 6.3 (Frobenius Theorem). The only associative real division algebras are
R, C and H.

Proof. We use the same notation of the preceding lemma, but now we suppose that A
is associative. We define

Q : Ξ× Ξ → Ξ

(a, b) 7→ −1

2
(ab+ ba).

It is clear that Q is real since

Q(a, b) =
a2 + b2 − (a+ b)2

2

for all a, b ∈ Ξ. Furthermore, it is obvious that Q(a, a) > 0 for all a ∈ Ξ − {0}. As
a consequence, Q induces a positive definite symmetric bilinear form on Ξ, that is, an
inner product on Ξ.
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Let Θ be a minimal subspace of Ξ that generates A as an algebra and let
{e1, . . . , em} be an orthonormal basis of Θ with respect to Q. From orthonormality,
we have e2i = −1 for all i between 1 and m, both included, and eiej = −ejei for all
distinct i and j between 1 and m, both included. Therefore, we analyze the following
situations:

• if m = 0, then A is generated by 1, and thus isomorphic to R;

• ifm = 1, then A is generated by 1 and e1 subject to e21 = −1, and thus isomorphic
to C;

• if m = 2, then A is generated by 1, e1 and e2 subject to e21 = e22 = −1 and
e1e2 = −e2e1, and thus isomorphic to H since the third imaginary part of the
quaternions coincides with the product of the other two;

• if m > 2, then v = e1e2em is well-defined (A is associative). We have

v2 = e1e2eme1e2em = −e21e22e2m = 1.

Thus,
(v + 1)(v − 1) = v2 − 1 = 0.

Since A is a division algebra, this implies v = 1 or v = −1. In turn,

e1e2 = −em or e1ee = em

respectively. Therefore, contradicting the minimality of Θ, we have that
{e1, . . . , em−1} generate A. Consequently, as we wished, this situation is not
possible. □

The reader can find another interesting proof of the Frobenius Theorem in [8],
that the author claims to be a “self-contained proof which seems both elementary and
conceptual”. There is also a fantastic result called Zorn’s Theorem: the only alternative
real division algebras are R, C, H and O. This was proved by Max Zorn (1906-1993),
the guy of the lemma, in the paper [11] of 1930, that was correlated to his doctoral thesis.
We will not prove it here, but we point out that the Frobenius Theorem follows easily
from Zorn’s Theorem.

Finally, we sketch the proof of the fact that R, C, H and O are also the only
normed division algebras. This result was first proved by Adolf Hurwitz (1859-1919) in
the paper [6] of 1898. In the sketch given below, we assume some knowledge on Clifford
algebras and their representations. The reader can find all of the notions required for this
in [4, pp. 149-181].
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Theorem 6.4 (Hurwitz’s Theorem). The only normed real division algebras are R,
C, H and O.

Sketch of proof. It can be proved that every n-dimensional normed division algebra has
an n-dimensional representation of the Clifford algebra Cliff(n − 1). The periodicity of
Clifford algebras implies that there exists such a representation of Cliff(n − 1) only if
n = 1, 2, 4 or 8. This happens because the irreducible representations of Cliff(n+ 8) are
obtained by tensoring those of Cliff(n) with R16. But since this multiplies dimension by
16, the irreducible representations of Cliff(n − 1) always have dimension greater than n
if n > 8. Then, by checking the representations of Cliff(n) for n ⩽ 8, we exclude the
undesired dimensions.

We have R, C, H and O, so normed division algebras exist in the dimensions
mentioned above. The only remaining question is about the uniqueness of these algebras.
This demands one to investigate more deeply the relation between normed division
algebras and the Cayley-Dickson construction. The interested reader can find some details
in [2, p. 158].

In the next section, we use topological K-theory to prove the Bott-Milnor-Kervaire
Theorem. Therefore, since we used Clifford algebras above, it is interesting to note that
there is a connection between Clifford algebras and K-Theory, the Atiyah-Bott-Shapiro
Theorem. This result also relates the periodicity of Clifford algebras to the one
of K-Theory given by the Bott Periodicity Theorem. These periodicity properties
are in the heart of many applications, including the Hurwitz’s Theorem and the
Bott-Milnor-Kervaire Theorem.

7. The Bott-Milnor-Kervaire Theorem

In this last section, we exhibit the main ideas involved in the proof of Theorem 6.1,
whose historical and mathematical relevance we hope to have shown to the reader
in the preceding discussions. In order to keep the reader curious, maybe it it worth
mentioning that, in the end, we will need the following elementary lemma from
Number Theory.

Lemma 7.1. Let n be a natural number. If 2n divides 3n − 1, then n must be either
1, 2 or 4.

Proof. We first write n = 2ℓm with m an odd number, because of the Fundamental
Theorem of Arithmetic. Then, it suffices to show that the highest power of 2 that divides
3n − 1 is 21 for ℓ = 0 and 2ℓ+2 for ℓ > 0. Indeed, if 2n divides 3n − 1, then n ⩽ ℓ+ 2 by
this fact. Hence,
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2ℓ ⩽ 2ℓm = n ⩽ ℓ+ 2

implies ℓ ⩽ 2 and n ⩽ ℓ + 2 ⩽ 4. Then, by checking the cases, we exclude n = 3

as desired. Therefore, let us find the highest power of 2 dividing 3n − 1. We do it by
induction on ℓ.

• For ℓ = 0, we just have to prove that 3n − 1 is not divisible by 22 = 4. In fact,
since m is odd, 3n − 1 = 3m − 1 ≡ (−1)m − 1 ≡ 2 (mod 4).

• For ℓ = 1, we just have to prove that 3m + 1 is not divisible by 23 = 8 because
3n− 1 = 32m− 1 = (3m− 1)(3m+1) and the highest power of 2 dividing 3m− 1

is 21 as above. In fact, 3m + 1 = 32(
m−1

2 )+1 + 1 ≡ 1
m−1

2 · 3 + 1 = 4 (mod 8)

since m is odd.

• The inductive step is the same as passing from n to 2n with n even. In this case,
we write 32n− 1 = (3n− 1)(3n+1). We have 3n+1 ≡ (−1)n+1 = 2 (mod 4)

since n is even, so the highest power of 2 that divides 3n + 1 is 21. Thus, the
highest power of 2 dividing 32n−1 is twice the highest power of 2 dividing 3n−1,
as desired. □

Now we begin the actual path to the proof by first reminding the reader that the
n-sphere is

Sn = {x ∈ Rn+1 : |x| = 1}

where |x| denotes the Euclidean norm of x ∈ Rn+1. It is equipped with the subspace
topology of Rn+1. Moreover, we say that the n-sphere Sn is an H-space if there exists a
continuous binary operation µ : Sn × Sn → Sn with a two-sided identity3. These notions
are important because the contrapositive of the following lemma is a key step for proving
the desired result.

Lemma 7.2. Let n be a natural number. If Rn+1 is a real division algebra, then
Sn is an H-space.

Proof. If Rn+1 is a division algebra, then µ : Sn × Sn → Sn is a continuous binary
operation with a two-sided identity for µ(x, y) = xy

|xy| .

From the preceding lemma, in order to prove the desired result, it suffices to
show that Sn is an H-space only if n = 0, 1, 3 or 7. This happens because we can
prove the theorem only when the underlying vector space is Rn+1. Indeed, if A is an

3In general, a topological space being an H-space is weaker than it being a topological group. This
happens because the first notion does not require associativity and inverses for the binary operation, while
the second one does require these properties. For example, S1 and S3 are topological groups with the
multiplications induced from C and H, respectively. In turn, S7 is an H-space with the multiplication
induced from O. However, it is not a topological group since the multiplication lacks associativity, as seen
in Remark 4.5.
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(n + 1)-dimensional vector space, then let α : A → Rn+1 be a linear isomorphism. The
diagram

A × A A

Rn+1 × Rn+1 Rn+1

mA

α×α α

mn+1

proves our assertion since:

• ifmA : A×A → A is a division algebra structure on A, then α ◦ mA ◦ (α×α)−1

is a division algebra structure on Rn+1;
• if mn+1 : Rn+1 × Rn+1 → Rn+1 is a division algebra structure on Rn+1, then
α−1 ◦ mn+1 ◦ (α× α) is a division algebra structure on A.

To prove that the sufficient condition presented above holds true, we need
K-Theory techniques that we do not present here for conciseness. The interested reader
can find all of the necessary information in [1], [4] and [5]. To be as direct as possible,
let us show that S2k is not an H-space for all k ∈ N. This is the first part of the proof of
Theorem 6.1.

Proof. The absolute K-Theory group K(S2n) is isomorphic to Z ⊕ Z for every n ∈ N.
The external product

⊠ : K(S2k) ⊗ K(X) → K(S2k ×X)

is an isomorphism. Then, it follows from the fact that K(S2k) can be described as the
quotient ring Z[γ]/(γ2) that

K(S2k × S2l) ≃ Z[α, β]/(α2, β2)

where α and β are the pullbacks of the generators of the reduced K-Theory
groups K̃(S2k) and K̃(S2l) under the natural projections of the Cartesian product S2k×S2l.
As a consequence, {1, α, β, αβ} is an additive basis for K(S2k × S2l). Now we assume
that there exists an H-space multiplication µ : S2k×S2k → S2k. We claim that the induced
homomorphism of K-rings

K(µ) : Z[γ]/(γ2) → Z[α, β]/(α2, β2)

is such that
K(µ)(γ) = α + β +mαβ
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for some m ∈ Z. Indeed,

S2k S2k × S2k S2ki µ

is the identity, where i is the inclusion into S2k × {e} with e being the identity element
of the H-space structure µ. Thus, K(i) for i the inclusion onto the first factor sends α to
γ and β to zero. Consequently, the coefficient of α in K(µ)(γ) must be 1. In a similar
manner, the coefficient of β in K(µ)(γ) must also be 1. However, this is impossible since
it would imply

K(µ)(γ2) = (α + β +mαβ)2 = 2αβ

despite
K(µ)(γ2) = 0

since γ2 = 0.

We still have to prove that, if k is a natural different from 1, 2 or 4, then S2k−1

is not an H-space. This is the hard part of the proof. The idea is to associate a map
S4k−1 → S2k to any map S2k−1 × S2k−1 → S2k−1, and then show that the Hopf
invariant of the first one is equal to plus or minus the unit provided that the second one
is an H-space multiplication. Consequently, the problem is solved by proving that a map
S4k−1 → S2k has Hopf invariant equal to plus or minus the unit only if k = 1, 2 or 4. For
this, one has to show the existence of a special kind of ring homomorphism in K-Theory,
Adams operations.

We begin by defining φ̂ : S2n−1 → Sn from φ : Sn−1 × Sn−1 → Sn−1. For this,
we regard S2n−1 as

∂(Dn × Dn) = ∂Dn × Dn ∪ Dn × ∂Dn

where
Dn = {x ∈ Rn : |x| ⩽ 1}

is the n-disc equipped with the subspace topology of Rn. We also regard Sn as the union
of two disks Dn

+ and Dn
− with their boundaries identified. Figures 3 and 4 may help the

visualization. We define

φ̂(x, y) =

|y| · φ(x, y|y|) ∈ Dn
+ for (x, y) ∈ ∂Dn × Dn

|x| · φ( x|x| , y) ∈ Dn
− for (x, y) ∈ Dn × ∂Dn.

It is not difficult to check that φ̂ is well-defined and continuous. Moreover, we have
φ̂ = φ on Sn−1 × Sn−1.
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D1

∂D1

× D1

∂D1

=

D1 × D1

∂(D1 × D1) ≈ S1

Figure 3. Visual representation of the circle S1 as the boundary of the product
D1×D1. The decomposition of this boundary as ∂D1×D1∪D1×∂D1 is clear since
∂D1 × D1 coincides with the red vertical segments of the boundary of the square
while D1 × ∂D1 coincides with the blue horizontal segments of the boundary of
the square.

D1
+

D1
−

≈

S1

Figure 4. Visual representation of the circle S1 as the union of the blue disc
D1

+ and the red disc D1
− with the boundaries identified. The purple points on the

right give the idea of identifying the blue and red points on the left, that are the
boundaries of the discs.

Now we consider the case in which n is even, so we replace n by 2k. Let Cf
be the space S2k with a 4k-dimensional cell e4k attached by a map f : S4k−1 → S2k. More
explicitly,

Cf = S2k ⊔ e4k/ ∼

with x ∈ ∂e4k = S4k−1 identified with f(x) ∈ S2k. The quotient Cf/S2k is then S4k,
and since K̃1(S4k) = K̃1(S2k) = 0, the exact sequence of the pair (Cf ,S2k) becomes a
short exact sequence

0 K̃(S4k) K̃(Cf ) K̃(S2k) 0.

Denoting by H the Boot bundle that gives the isomorphism in the Bott Periodicity
Theorem, let α ∈ K̃(Cf ) be the image of the generator (H − 1)4k of K̃(S4k) and let
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β ∈ K̃(Cf ) map to the generator (H − 1)2k of K̃(S2k). We have that the element
β2 maps to zero in K̃(S2k) since the square of any element of K̃(S2k) is zero. Thence,
by exactness

β2 = hα

for some integer h, called the Hopf invariant4 of f . We have all of the machinery needed
for the following lemma.

Lemma 7.3. If µ : S2k−1 × S2k−1 → S2k−1 is an H-space multiplication, then the
associated map µ̂ : S4k−1 → S2k necessarily has Hopf invariant equal to plus or
minus the unit.

Proof. Let e ∈ S2k−1 be the identity element for the H-space multiplication µ. In view
of the definition of µ̃ it is natural to view the characteristic map Φ of the 4k-cell of
Cµ̂ as a map

(D2k × D2k, ∂(D2k × D2k)) → (Cµ̂,S2k).

In the following commutative diagram, the horizontal maps are the product maps. In
turn, the diagonal map is external product, that is equivalent to the external product
K̃(S2k) ⊗ K̃(S2k) → K̃(S4k), which is an isomorphism since it is an iterate of the Bott
periodicity isomorphism.

K̃(Cµ̂)⊗ K̃(Cµ̂) K̃(Cµ̂)

K̃(Cµ̂,D2k
− )⊗ K̃(Cµ̂,D2k

+ ) K̃(Cµ̂,S2k)

K̃(D2k × D2k, ∂D2k × D2k)⊗ K̃(D2k × D2k,D2k × ∂D2k) K̃(D2k × D2k, ∂(D2k × D2k))

K̃(D2k × e, ∂D2k × e)⊗ K̃(e× D2k, e× ∂D2k)

≈

K̃(Φ)⊗K̃(Φ) K̃(Φ)

≈ ≈

4To see that h is well-defined, that is, independent of the choice of β, note that β is unique up to adding
a multiple of α, and (β +mα)2 = β2 + 2mαβ since α2 = 0, so it suffices to show that αβ = 0. Indeed,
since α maps to zero in K̃(S2k), so does αβ, hence αβ = ℓα for some integer ℓ. Multiplying the equation
ℓα = αβ on the right by β gives ℓαβ = αβ2 = α(hα) = hα2, and this is zero since α2 = 0. Thus
ℓαβ = 0, which implies αβ = 0 since αβ lies in an infinite cyclic subgroup of K̃(Cf ), the image of
K̃(S4k).
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By the definition of an H-space and the definition of µ̂, the map Φ restricts to a
homeomorphism from D2k × e onto D2k

− and from e × D2k onto D2k
+ . Therefore,

β ⊗ β ∈ K̃(Cµ̂) ⊗ K̃(Cµ̂)
5 maps to a generator in the bottom row of the diagram, since

β restricts to a generator of K̃(S2k). By commutativity of the diagram, the product map
in the top row sends β ⊗ β to ±α since α is the image of a generator of K̃(Cµ̂,S2k).
Consequently, we have β2 = ±α. This precisely says that the Hopf invariant of µ̂ is plus
or minus the unit.

According to the outline given above and to all of the details we have already
proven, in order to conclude the proof of the Bott-Milnor-Kervaire Theorem, it suffices to
show that there exists a map S4k−1 → S2k with Hopf invariant equal to plus or minus the
unit only if k = 1, 2 or 4. This result, due to John Frank Adams (1930-1989), is proved
below to close section.

Proof. John Adams proved that, for every compact Hausdorff space X , there exist ring
homomorphisms

ψℓX : K(X) → K(X)

such that the diagram

K(X) K(X) K(X)

K(Y ) K(Y ) K(Y )

ψℓm
X

ψℓ
X ψm

X

ψℓm
Y

ψℓ
Y

K(g) K(g)

ψm
Y

K(g)

is commutative for any map g : X → Y between compact Hausdorff spaces,

ψℓ(θ) = θℓ

if θ is a line bundle, and
ψp(η) ≡ ηp (mod p)

5Here α ∈ K̃(Cµ̂) is the image of the generator (H − 1)4k of K̃(S4k) and β ∈ K̃(Cµ̂) maps to the
generator (H−1)2k of K̃(S2k). The maps are the ones in the short exact sequence induced by the sequence
of the pair (Cµ̂,S2k).
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for p prime, that is, ψp(η) − ηp = pν for some ν ∈ K(X). These ring homomorphisms
are called the Adams operations. Furthermore, because of their naturality condition, we
have an operation

ψℓ : K̃(X) → K̃(X)

given by restriction, since K̃(X) is the kernel of the homomorphism K(X) → K(x0)

induced by the inclusion of x0 ∈ X in X . For X = S2m, with a bit of work, one can
prove that

ψℓ : K̃(S2m) ≃ Z → K̃(S2m) ≃ Z

is multiplication by ℓm. Therefore, let f : S4k−1 → S2k be a continuous map with
Hopf invariant equal to plus or minus the unit. Let α and β be the elements of K̃(Cf )

constructed in the process of defining the Hopf invariant of f . Since α is the image of a
generator of K̃(S4k),

ψℓ(α) = ℓ2kα.

Similarly,
ψℓ(β) = ℓkβ + νℓα

for some νℓ ∈ Z. Therefore,

ψℓψm(β) = ψℓ(mkβ + νmα) = ℓkmkβ + (ℓ2kνm +mkνℓ)α.

Since ψℓψm = ψℓm = ψmψℓ, the coefficient ℓ2kνm +mkνℓ of α is unchanged when ℓ and
m are switched. This gives

ℓ2kνm +mkνℓ = m2kνℓ + ℓkνm.

Equivalently,
ℓk(ℓk − 1)νm = mk(mk − 1)νℓ.

Because 2 is a prime number,

ψ2(β) ≡ β2 (mod 2).

Since β2 = ±α because the Hopf invariant of f is plus or minus the unit, the formula
ψ2(β) = 2kβ + ν2α implies ν2 ≡ ±1 (mod 2). Hence, ν2 is odd. Moreover, for ℓ = 2

and m = 3,
2k(2k − 1)ν3 = 3k(3k − 1)ν2.

Thence, 2k | 3k(3k − 1)ν2. But since 3k and ν2 are odd, 2k must divide 3k − 1. Therefore,
k must be 1, 2 or 4 by Lemma 7.1.
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