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Abstract. In 1989, D. Happel pointed out for a possible connection between
the global dimension of a finite-dimensional algebra and its Hochschild
cohomology: is it true that the vanishing of Hochschild cohomology higher
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1. Introduction

Cohomology of associative algebras was introduced by G. Hochschild in 1945 [1]; just
after the same had been made for groups by S. Eilenberg and S. Mac Lane; and some years
before cohomology of Lie algebras was brought in by C. Chevalley and S. Eilenberg.
After some years, all of these theories were brought together with a unified approach in
H. Cartan and S. Eilenberg’s book “Homological Algebra”, published in 1956 [2]. This
could only be done with a good deal of abstraction – which was carried out in parallel
to the development of Category Theory – and with the introduction of derived functors.
In this manner, Hochschild’s cohomology received a new definition through the functor
‘Ext’, and homology was defined dually using ‘Tor’.

Another important notion introduced in the book was that of projective and global
dimension for modules and rings. During the decade of the 1950s, a great deal of research
was made in order to understand these concepts and how properties of rings could be
understood through them. This led to some significant rewards: for instance, after works
of M. Auslander, D. Buchsbaum and J.-P. Serre, many problems concerning regular
rings – which play a fundamental role in Algebraic Geometry – could be solved. Also
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concerning homological dimensions, H. Bass published, in 1960, what is now probably
the oldest unsolved problem in Homological Algebra: the finitistic dimension conjecture.

By the beginning of 1980s, P. Gabriel had already given a concrete framework for
the study of finite-dimensional algebras: quivers (i.e. oriented graphs). He proved that
every finite-dimensional algebra could be associated – without great loss to the study of
its modules – to a quotient of some quiver algebra. Possibly pushed by these results, some
interest has risen towards the computation of Hochschild (co)homology for these algebras.
This was made clear in an influential paper by D. Happel [3], in which important previous
examples of C. Cibils were also surveyed.

The focus of the present survey resides essentially in a observation made in
Happel’s article [3, 1.4]: if an algebra has finite global dimension, then it can be
proved that its Hochschild cohomology vanishes for higher degrees; what about the
converse? An answer to it was given only in 2005, when Buchweitz et al. [4]
published a counterexample. In the meantime, important research was made concerning
also Hochschild homology: the vanishing of Hochschild homology was proved to
characterize finitude of global dimension for commutative algebras; E. Sköldberg [5]
gave computations for two important quotients of quiver algebras; and others also gave
valuable contributions to the understanding of Cyclic Homology – which is intrinsically
related to Hochschild’s. Taking all this into consideration, and also after noting that
the above counterexample is well behaved when considering its homology, Y. Han [6,
3.4] proposed to reformulate Happel’s question to homology, i.e. he conjectured that an
algebra has finite global dimension if, and only if, its Hochschild homology vanishes in
higher degrees.

This is where the present survey begins.

Our main objective is to give a good account on the partial answers already given
to Han’s conjecture. While some of them can even be deduced from results prior to Han’s
statement, others were motivated especially by it. This is presented in section 4. To do so,
we firstly give a succinct presentation of the notions of global dimension and Hochschild
(co)homology of algebras in the preliminaries section 2. Afterward, in section 3, we
establish crucial results providing a proper motivation to the precise statement of Han’s
conjecture. These are done for arbitrary algebras over a perfect field, in a slight contrast
with Han’s paper, which is focused in quotient of path algebras. At the final section 5,
we conclude the paper by making some comments on possible future steps for research.
Throughout the paper, we also try to show some subtle aspects in which homology differs
from cohomology – what makes Han’s question indeed distinct from Happel’s.

In this manner, I hope to provide a clear picture of this topic of research as it
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is today. This was not done having in mind the specialist solely, in such a way that
the beginning graduate student should also feel encouraged to read it – and invited
to the research on the subject. With this in mind, I did not refrain from including
references when presenting either a concept that asks for a better introduction or an
argument that requires basic results from rings, modules and homology. That said,
an acquaintance with some concepts of the theory are desired, such as: simple and
semisimple modules; projective and injective modules; complexes and exact sequences;
categories and functors; path algebras.

Notation and Terminology: Throughout this paper, by an algebra we mean an unital
associative algebra over a field. In order to aid the exposition, the reader may also assume
that all algebras are noetherian. The word ”two-sided“ will be omitted when talking
about two-sided noetherian or artinian algebras, or about two-sided ideals. In addition,
the following notations will be used:

• k for an arbitrary field;
• kalg for the algebraic closure of k;
• A and B for k-algebras;
• J(A) for the Jacobson radical of A;
• ⊗ for the tensor product over k, i.e. ⊗ = ⊗k;
• A-Mod (resp. Mod-A) for the category of left (resp. right) A-modules
• Aop for the opposite algebra, i.e. A with multiplication in reverse order.

2. Homology of Associative Algebras

We begin by defining the notion of global dimension. As we will see in the example below,
one may see it intuitively as a measure on how far an algebra is from being semisimple.
For a better understanding on the concept and how it can be used to derive properties of
an algebra, I recommend [7, Sections 4.1-4.4].

Definition 2.1. Given an A-module M , its projective dimension pdA(M) is defined as
the minimum n ∈ N such that M has a projective resolution of lenght n, i.e. an exact
sequence

0→ Pn → . . .→ P0 →M → 0

where each Pi is a projective module. If such a finite resolution does not exist, we write
pdA(M) =∞. The global dimension of A is defined as

gldim(A) := sup{pdA(M) |M ∈ A-Mod}.

Remark 2.2. For a more precise definition, it would be necessary to distinguish the left
and right global dimensions of A, given when we consider the supremum either over
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A-Mod or over Mod-A. However, as shown by M. Auslander [8, Corollary 5], they both
coincide when A is noetherian.

Example 2.3. 1. An algebra A is semisimple if, and only if, every left (or right)
A-module is projective (see [9, 2.8]), so A is semisimple precisely when
gldim(A) = 0.

2. An algebra A satisfying gldim(A) ⩽ 1 is called hereditary. One of the most
important examples of these are quiver algebras kQ (also known as path algebras).
If its quiver Q does not have oriented cycles, then kQ is finite-dimensional and,
in that case, it can be proved that the quotient algebra kQ/I has finite global
dimension for any ideal I of kQ, cf [10, Corollary 6]. For an introduction to path
algebras, I refer to [11, Chapter II].

3. Noetherian self-injective algebras (also known as quasi-Frobenius) have global
dimension equal to zero or to infinity, see [7, Exercise 4.2.2]. This class
of algebras contains every Frobenius algebra A, i.e finite-dimensional algebras
satisfying A ∼= Homk(A, k) as A-modules, and every symmetric algebra, i.e. the
ones satisfying A ∼= Homk(A, k) as A-bimodules. For a good account on these, I
reccomend [12, Chapter 6].

4. Given a finite-dimensional Lie algebra g over a field k, the global dimension of its
universal enveloping algebra Ug satisfies

gldim(Ug) = pdUg(k) = dimk(g),

cf. [7, Ex. 7.3.5, Applicaton 7.7.4].

Now, we will give the definition of Hochschild (co)homology in terms of Ext

and Tor functors. For that, the reader should be aware that an A-bimodule M may be
considered, equivalently, as a left or right (A⊗ Aop)-module by the following identities:

a⊗ a′) ·m = ama′ = (m · (a′ ⊗ a), a, a′ ∈ A,m ∈M

Definition 2.4. [2, IX:§4] The Hochschild homology groups (of degree n) of an algebra
A with respect to a A-bimodule M are defined as

HHn(A,M) = TorA⊗Aop

n (M,A), n ∈ N

Its Hochschild cohomology groups (of degree n) are given by

HHn(A,M) = ExtnA⊗Aop(A,M), n ∈ N

We shall use the notation HHn(A) and HHn(A) for the case M = A.

71



LAJM v.2.n.2 (2023) ISSN 2965-0798

One can note that each of the abelian groups HHn(A,M) and HHn(A,M) have
also the structure of a k-vector space induced by A and M .

A good introduction to this homological theory is given in [13]. For a more
thorough study, I refer to [7, Chapter 9] and [14]. However, we also try to give some
intuitions on how this (co)homology behaves. Firstly, we note that the zero degree groups
satisfies the following isomorphims:

HH0(A) ∼= A/[A,A] HH0(A) = Z(A),

where Z(A) denotes the center of A and [A,A] = ⟨ab− ba | a, b ∈ A⟩ is the commutator
subspace of A. Therefore, zero degree (co)homology measures the commutativity of A.
Example 2.5. 1. If A = k, then for any k-bimodule M (i.e. a vector space) the

(co)homology is trivial:

HHn(k,M) ∼= HHn(k,M) ∼=

k, n = 0

0, n > 0

2. (Truncated polynomial algebras, [13, 5.9]) Let A = k[x]/(p) for a polynomial p,
then the homology groups HHn(A) are given by the homology of the complex

. . .
p′·−→ A

0−→ A
p′·−→ A

0−→ A→ 0,

where p′· represents the map of multiplication by the (formal) derivative p′. We
also have HHn(A) ∼= HHn(A), since A is symmetric [12, 3.15A, 16.55] (see
item 5 of proposition below).

Now, we summarize some of the main properties of Hochschild (co)homology.
Proposition 2.6. Given algebras A and B, we have for each n ∈ N that:

1. HHn(A×B) ∼= HHn(A)⊕HHn(B)

2. (Change of the ground field) Given an extension of fields ℓ ⊆ k, the ℓ-algebra
Aℓ = A⊗ ℓ satisfies HHn(Aℓ) ∼= HHn(A)⊗ ℓ.

3. HHn(A⊗B) ∼=
⊕

i+j=nHHi(A)⊗HHj(B)

4. If A and B are Morita-equivalent (i.e. A-Mod is equivalent to B-Mod), then
HHn(A) ∼= HHn(B) .

5. If A is a finite-dimensional symmetric algebra1, then HHn(A) ∼= HHn(A).

Properties 1. to 4. are also valid for the cohomology groups HHn(A) with the following
additional hypothesis for property 3.: A or B need to be finite-dimensional.

1Not to be confused with the symmetric algebra Sym(V ) given by a vector space V , which is isomorphic
to k[x1, . . . , xn] if dimk(V ) = n. Even so, the proposition is unintentionally also valid for these algebras,
see [7, Exercise 9.1.3].

72



LAJM v.2.n.2 (2023) ISSN 2965-0798

Proof. 1. [7, Theorem 9.1.8]
2. This follows from the following identities:

HHn(Aℓ, A⊗ ℓ) ∼= HHn(A,A⊗ ℓ) ∼= HHn(A,A)⊗ ℓ,

where [7, Theorem 9.1.7] was used for the first equality, and that (−⊗ℓ) is an exact
functor for the second one, see [7, Ex. 2.4.2]. The same works for cohomology.

3. [7, Proposition 9.4.1] or [14, 4.2.5].
4. [7, Theorem 9.5.6] and [15, Theorem 2.11.1].
5. A symmetric algebra A is characterized by the property A ∼= Homk(A, k) as

A-bimodules. Hence,

HHn(A) = ExtnA⊗Aop(A,A) ∼= ExtnA⊗Aop(A,Homk(A, k))

Using [16, Proposition 2.8.5] and that k is k-injective, we deduce that

HHn(A) ∼= Homk(Tor
n
A⊗Aop(A,A), k) = Homk(HHn(A), k).

So, the cohomology groups are the dual spaces of homology ones. Therefore, they
are isomorphic when A is finite-dimensional.

Remark 2.7. It is worth mentioning that a generalization of item 4 was proved by
D. Happel in the framework of finite-dimensional algebras [3, 4.2] – namely, that
cohomology of A and B are equal if B is “tiltable” to A. This was shown in a more
general setting (including any algebra over a field) by J. Rickard [17, Proposition 2.5],
soon after giving a more profound characterization on the tiltable property for any rings
[17, Theorem 1.1]. In more detail, he proved that B is tiltable to A if, and only if, its
derived categories are equivalent – and in that case we say that A and B are derived
equivalent. Similarly, it can be proved that Hochschild homology is invariant by derived
equivalences, cf. [18, Theorem 2.2].

The following example shows how these properties may be valuable in order to
calculate Hochschild (co)homology of an algebra.

Example 2.8. Given a finite-dimensional semisimple algebra A over an algebraically
closed field k, we know by the Wedderburn-Artin theorem that

A ∼=
m⊕
i=1

Mni
(k)

for some ni,m ∈ N. So, using properties 1 and 4 and that Mn(k) is Morita-equivalent to
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k, we may conclude that

HHn(A) ∼= HHn(A) ∼=

km, n = 0

0, n > 0
.

Now, we give an important representative for the Morita-equivalence class of an
algebra.
Theorem 2.9. Assume k is an algebraically closed field, then every finite-dimensional
algebra is Morita-equivalent to an (admissible) quotient of a path algebra kQ/I .

Comments on the proof. This follows from two facts:

• Every finite-dimensional algebra is Morita-equivalent to a basic algebra [12,
18.37].

• Every basic algebra is isomorphic to an admissible quotient of a path algebra.

Over an algebraically closed field, the second item is a well-known result of P. Gabriel,
see [11, section II.3]. A similar result may also be proved if one considers, more generally,
perfect fields (definition 2.13). An outline for the proof can be found in [16, Corollary
4.1.11] and, for a more detailed approach, see [19, Theorem 3.12], where the proofs are
carried out by using the notion of species.

For this reason, when studying Hochschild (co)homology of finite-dimensional
algebras, not much generality is lost if one considers just quotients of path algebras – and
that is what many authors do (e.g. D. Happel and Y. Han).

Now, we mention two properties that are valid exclusively for homology.
Proposition 2.10. For each n ∈ N, we have that:

1. HHn(−) : Algk → Vectk is a functor from the category of k-algebras to the
category of k-vector spaces.

2. Given algebras A and B and a A-B-bimodule M ,

HHn(

[
A M

0 B

]
) ∼= HHn(A)⊕HHn(B).

Proof. [14, 1.1.4] and [14, 1.2.15]

Remark 2.11. The first property is not valid, for example, in zero degree cohomology:
the center Z(−) is not a functor.

As shown in the example above, Hochschild cohomology of matrix algebras
over k vanishes for every n and every bimodule. In what follows, we provide some
characterizations of algebras satisfying this property.
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Theorem-definition 2.12. We say that an algebra A is separable if it satisfies the
following equivalent conditions:

1. HH i(A,M) = 0 for every i > 0 and every A-bimodule M .
2. A⊗ Aop is semisimple.
3. A is finite-dimensional and A⊗ ℓ is semisimple for every field extension ℓ ⊇ k.
4. A is finite-dimensional and A⊗ kalg is semisimple.

Comments on the proof. The equivalence 1 ⇔ 3 was already proved in G. Hochschild’s
1945 paper [1, Theorem 4.1], showing how his cohomology can be a useful tool to
understand properties of associative algebras. More modern proofs may be found in [2,
IX: Theorems 7.9, 7.10] and in [7, Theorem 9.2.11].

As it can be seen by the characterization 3, every separable algebra is semisimple.
So, one may ask when the converse holds. As we will show below, the answer is to
consider perfect fields. This good behaviour is one of the main reasons that many of the
results in the next section will be formulated over fields of this class, which is not a small
one: it includes fields that are either finite, algebraically closed or of characteristic zero.
Definition 2.13. A field k is said to be perfect if every finite (or algebraic) extension of k
is separable.

We recall that an algebraic extension ℓ ⊃ k is separable if, and only if, for every
α ∈ ℓ the derivative of the minimal polynomial of α over k is non-zero. This is consistent
with the above notion of separable algebras: a finite extension ℓ ⊃ k is separable if, and
only if, ℓ is a separable k-algebra [7, 9.2.8].
Proposition 2.14. A field k is perfect if, and only if, every finite-dimensional semisimple
k-algebra is separable.

Proof. A finite-dimensional algebra A is semisimple if, and only if, J(A) = 0.
Furthermore, J(A ⊗ ℓ) = J(A) ⊗ ℓ for every separable algebraic extension ℓ ⊇ k, cf.
[9, 5.17]. So, if k is a perfect field, we have that J(A ⊗ kalg) = 0 for every semisimple
algebra A. The converse follows immediately from the definition: if k is not perfect, then
there exists a field ℓ which is finite-dimensional over k and is not separable.

3. Statement of Han’s conjecture

In this section, restricting ourselves to finite-dimensional algebras A, we will show that,
if gldim(A) is finite, then its Hochschild homology is concentrated solely in degree
zero. In this manner, we will get a legitimate motivation for the statement of Han’s
conjecture. Before that, we will prove a more elementary result, and which is also valid
for cohomology.

In what follows, we will use the following standard notation:
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Definition 3.1. The Hochschild homological (resp. cohomological) dimension of an
algebra A is defined as

hh.dim(A) := sup{n ∈ N | HHn(A) ̸= 0}

hch.dim(A) := sup{n ∈ N | HHn(A) ̸= 0}.

If, by any chance, HHn(A) = 0 (resp. HHn(A) = 0) for all n, we settle, as a convention,
that hh.dim(A) = 0 (resp. hch.dim(A) = 0).

In the following results, we will assume that A/J(A) is separable, which is always
true when k is a perfect field. Indeed, this follows by proposition 2.14 and the fact that
A/J(A) is semisimple.
Proposition 3.2. If A is a finite-dimensional algebra such that A/J(A) is separable (e.g.
k is a perfect field), then:

1. gldim(A⊗ Aop) = 2 · gldim(A).
2. gldim(A⊗ ℓ) = gldim(A) for every field extension ℓ ⊇ k.

Proof. Using the notation A = A/J(A), it follows from 2.12 that:

1. A⊗ Aop is semisimple;
2. A⊗ ℓ is semisimple for every field extension ℓ ⊇ k.

In this way, the proposition follows from a result of Auslander [8, Theorem 16].

From the definition of Ext and Tor functors, it is possible to conclude that

hh.dim(A), hch.dim(A) ⩽ pdA⊗Aop(A) ⩽ gldim(A⊗ Aop).

In this manner, we obtain the following consequence from the first item2:
Corollary 3.3. Every finite-dimensional algebra A such that A/J(A) is separable (e.g.
k is a perfect field) satisfies:

gldim(A) <∞ =⇒ hh.dim(A) <∞, hch.dim(A) <∞.

Remark 3.4. In the results above, the hypothesis over the field is truly necessary: if k is
not a perfect field, then it has a non-separable element α ∈ kalg \ k, so that its minimal
polynomial mα has zero derivative. Therefore, k(α) = k[x]/(mα) is a finite-dimensional
k-algebra with gldim(k(α)) = 0 (since it is a field) whose Hochschild (co)homology is,
by example 2.5, always non-zero:

HHn(k(α)) ∼= HHn(k(α)) ∼= k(α)

2We could also use the following result: pdA⊗Aop(A) = gldim(A), see [10, §4].
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for every n ⩾ 0. For a concrete example, one can take k = Fp(t) and α = p
√
t for some

prime p, so that mα = xp − t.

Now, we will see that we have a much stronger result for the homological
dimension, which is essentially a consequence of the following result by B. Keller.

Lemma 3.5. [20, 2.5] Suppose A is a finite-dimensional algebra such that A = A/J(A)

is a product of copies of k and HomA(S, S) ∼= k for each simple A-module S.3 If A has
finite global dimension, then we have an isomorphism (induced by the inclusion A ↪→ A)
of the cyclic homology groups HCn(A) ∼= HCn(A) for every n ⩾ 0.

The reader not acquainted with Cyclic Homology should not be alarmed by its use
in the formulation of the above. The cyclic homology groups have an intrinsic relation
with Hochschild ones, given by the so-called Connes’ long exact sequence:

. . .→ HCn+1(A)→ HCn−1(A)→ HHn(A)→ HCn(A)→ HCn−2(A)→ . . .

For instance, when n = 0, we have the isomorphism HC0(A) ∼= HH0(A). Furthermore,
as we note below, we could have replaced HC by HH when writing the lemma.

Lemma 3.6. [14, 2.2.3] Let f : A→ A′ be a morphism of k-algebras.

f gives the isomorphism HH∗(A) ∼= HH∗(A
′) ⇐⇒ f gives the HC∗(A) ∼= HC∗(A

′)

From these results, we obtain the following synthesis:

Theorem 3.7 (Keller). Every finite-dimensional algebra A such that A/J(A) is separable
(e.g. k is a perfect field) satisfies:

gldim(A) <∞ =⇒ hh.dim(A) = 0.

Proof. We fix the notation Akalg = A⊗ kalg. Using that A/J(A) is separable, we deduce
that Akalg = Akalg/J(Akalg) is semisimple (over an algebraically closed field), so that it is
isomorphic to a direct sum of matrix algebras Mn(k

alg) by the Wedderburn-Artin theorem.
Hence, the associated basic algebra (Akalg)

b, which is Morita-equivalent to Akalg , satisfies
the hypothesis of lemma 3.5.

Now, from 3.2, we also know that gldim(A) = gldim(Akalg). In this manner,
applying both lemmas (and some Morita invariance), we get that:

gldim(A) <∞ =⇒ HHn(Akalg) ∼= HHn((Akalg)
b) ∼= HHn

( (Akalg)
b

J(Akalg)b

)
3The second assumption can be proved to be superfluous, see [9, 4.8, 7.7]
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Since the quotient is a product of copies of kalg, we can conclude that the latter is zero for
every n > 0. Finally, this is also valid for HHn(A), since

HHn(Akalg) ∼= HHn(A)⊗ kalg for all n ⩾ 0

by property 2 in proposition 2.6.

Now, we finally formulate Han’s conjecture for perfect fields, which is basically
the converse of the results proved above.

Conjecture 3.8 (Han). If A is a finite-dimensional algebra such that A/J(A) is separable
(e.g. k is a perfect field), then the following are equivalent:

1. hh.dim(A) <∞
2. hh.dim(A) = 0

3. gldim(A) <∞

Since implication 1⇒ 3 is the only one that hasn’t been proved yet, and it is also
studied for algebras in general, we establish:

Definition 3.9. The implication hh.dim(A) < ∞ =⇒ gldim(A) < ∞ is called
Han’s property. The analogous statement for cohomology (i.e hch.dim(A) < ∞ =⇒
gldim(A) <∞) is called Happel’s property.

As one might wonder, Keller theorem does not have an analogous for cohomology.
In fact, using Happel’s computation in [3, 1.6], one can take even path algebras (over an
algebraically closed field) as counterexamples: if Q is a quiver (without oriented cycles)
whose underlying graph is not a tree, then HH1(kQ) ̸= 0. For example, taking Q1 =

(1 ⇒ 2) and Q2 to be
1

2 3

we get that HH1(kQ1) ∼= k3 and HH1(kQ2) ∼= k.

4. (Partial) Answers to Han’s Conjecture

4.1. Algebras satisfying Han’s or Happel’s property

We summarize in tables 1 and 2 below, the classes of algebras which have been proven to
satisfy, respectively, Han’s and Happel’s property. In what follows, some comments will
be made in order to help with two types of difficulties when reading it. The first one is
that many of the examples are not exactly well-know – and some have been defined only
in the reference paper – so we provide the definitions for some of these cases. In a second
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aspect, it may not be clear the reason why Han’s property follows from the theorems in
the references, thus some clarifications are given in this direction.

As we will note below, two of these classes (group algebras and trivial extensions)
are of symmetric algebras, so both properties are equivalent by proposition 2.6. With this
in mind, even though they also satisfy Happel’s property, we have recorded them only in
Han’s table.

Class of algebras Assumption over the field References

group algebras - [21], [22, Thm I.1]

quotients of
acyclic quiver algebras

- [10, Cor. 6], [23]

commutative - [24], [25]

exterior algebras - [26, Theorem 2]

monomial - [6, Theorem 3]

quantum complete intersections - [27, Theorem 3.1]

N -Koszul char(k) = 0 [28, Theorem 4.5 ]

homogeneous quotients of
quiver algebras with loops

char(k) = 0 [28, Theorem 4.7]

graded cellular char(k) = 0 [28, Theorem 4.9 ]

a generalization of quantum
complete intersections

- [29, Theorem I ]

local graded algebras
with a certain relation

- [29, Theorem II]

quantum generalized
Weyl algebras

char(k) = 0 [30, 1.1, 1.2, 3.3]

trivial extensions of local algebraically closed [31, Theorem 3.2]

trivial extensions
of self-injective

algebraically closed [31, Theorem 3.5]

trivial extensions of graded algebraically closed,
char(k) = 0

[31, Theorem 3.9]

Table 1. Known examples of algebras satisfying Han’s property. With the
exception of lines 3, 10 and 12, all of them are assumed to be finite-dimensional.
The list is organized in chronological order of the references.

Group Algebras: In this section, all groups are assumed to be finite. The fact that every
group algebra satisfies Han’s property was not explicitly found in the literature. However,
the following proof, which was essentially communicated by Eduardo N. Marcos, is easily
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Class of algebras Reference

commutative [32, Corollary]

exterior algebras [26, Theorem 3]

truncated [33, Theorem 3]

some quantum complete intersections [27, Theorem 3.3]

quantum generalized Weyl algebras [30, Theorems 1.1, 1.2, 3.3]

Table 2. Examples of algebras satisfying Happel’s property. With the exception of
the last class, all of them are assumed to be finite-dimensional over an arbitrary
field. The list is organized in chronological order of the references.

deduced from somewhat well-know facts from Group (Co)Homology.

First of all, one should be aware that every group algebra is symmetric [12, 16.56],
so that its Hochschild homology and cohomology are isomorphic. Another important
aspect is that its global dimension have only two possible values: zero or infinite. By
Maschke’s theorem, we know that a group algebra kG has zero global dimension if, and
only if, char(k) does not divide the order of G. In this manner, the assertion that kG
satisfies Han’s property is equivalent to the following:

Theorem 4.1. If char(k) = p > 0 divides the order of a finite group G, then
hh.dim(kG) =∞.

Now, a result of Burghelea [22, Theorem I.1] shows that homology of group
algebras can be computed in terms of Group Homology. The same holds for cohomology,
see [15, Theorem 2.11.2]. These results show, in particular, that the (co)homology groups
of G with respect to k, denoted by Hn(G, k) and Hn(G, k)4, are direct summands,
respectively, of HHn(kG) and HHn(kG). Thus, the proof can be concluded by using
a result of R. Swan [21]: it guarantees that, if char(k) = p divides the order of G, then
Hn(G, k) is non-zero for an infinite number of values of n > 0.

One final comment about Swan’s article should be made: although it is focused
in cohomology with coefficients in Z, the author also remarks that his arguments are
also valid for coefficients in Fp, and therefore for any field k of characteristic p, since
Hn(G, k) ∼= Hn(G,Fp)⊗Fp k.

Commutative algebras: (In this topic, all algebras are assumed to be commutative.) As
it can be seen in the table, two references were provided for this case. This was made,
because it was proved independently by two groups of authors: Avramov & Vigué-Poirrier

4In terms of Ext-Tor functors, they can defined as Hn(G, k) = TorkGn (k, k) and Hn(G, k) =
ExtnkG(k, k)
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(1992) and the Buenos Aires Cyclic Homology Group (1994). One difference between
their results is that the latter assumed the characteristic of the ground field to be zero while
the former did not. Another notable aspect is that these articles were published more than
10 years prior to the statement of Han’s conjecture. So, now we provide a few comments
on how precisely Han’s property can be deduced from them.

Basically, the following theorem (which is not restricted to finite-dimensional
algebras) was proved:
Theorem 4.2. A finitely generated commutative algebra A is smooth if, and only if, its
Hochschild homological dimension is finite.

Now, we will outline that smoothness for finitely generated algebras implies in
finite global dimension – and even more for artinian algebras: it is equal to zero. This,
together with the theorem, proves Han’s property for commutative finitely generated
algebras – and, in particular, for finite-dimensional ones.

Smooth noetherian algebras are, in particular, regular, cf. [7, Cor. 9.3.13]. This
implies that the global dimension coincides with the Krull dimension for these algebras,
see [12, 5.94]. Now, one just need to note that finitely generated algebras have finite Krull
dimension – and artinian algebras have zero dimension. Indeed, the Krull dimension of
k[x1, . . . , xn]/I is no bigger than n for any ideal I . Therefore, every smooth finitely
generated algebra has finite global dimension, which is equal to zero when the algebra is
finite-dimensional.

Exterior algebras and quantum complete intersections: These two examples share
some properties: for instance, they are both Frobenius and local. Furthermore, the results
in the references show that their Hochschild homological dimensions are both infinite. By
proposition 3.2, this implies in infinite global dimension (if the field is perfect). However,
this conclusion can be also deduced (cf. example 2.3) from the more elementary fact that
they are non-semisimple Frobenius algebras. Now, we define these algebras and provide
some details in these directions.

Given a vector space V over k with basis {e1, . . . , en}, the kth component of its
exterior algebra can be defined as the following quotient:

Λk(V ) :=
V ⊗k

⟨e1 ⊗ . . .⊗ ek − sgn(σ)eσ(1) ⊗ . . .⊗ eσ(k) | σ ∈ Sk⟩
,

where Sk denotes the symmetric group. In this manner, we define the exterior algebra of
V to be the graded algebra Λ(V ) := ⊕n

i=0Λ
i(V ), where the product of two elements

is simply given by concatenation the tensor products. It is possible to notice that
dimk(Λ

i(V )) =
(
n
i

)
and, therefore, that dimk(Λ(V )) = 2n.
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One can note that J = ⊕n
i=1Λ

i(V ) is the unique maximal ideal of Λ(V ) – which
coincides with its Jacobson radical – so that Λ(V ) is a local algebra. Dually, we see that
I0 = Λn(V ) is the unique minimal ideal of Λ(V ), since it is a one-dimensional ideal and,
for every 0 ̸= a ∈ Λ(V ), there exists some b ∈ Λ(V ) such that 0 ̸= ab ∈ Λn(V ). In this
manner, any linear functional λ : Λ(V ) → k such that λ(I0) ̸= 0 satisfies the following
property: for every ideal I ̸= 0 of Λ(V ), we have that ker(λ) ̸⊇ I . The existence of such
λ is equivalent to saying that the exterior algebra is Frobenius, see [12, 3.15]. Using this
– and that, because of J ̸= 0, it cannot be semisimple – we can conclude that the global
dimension of Λ(V ) is infinite indeed.

Now, it is possible to see the same properties are satisfied by quantum complete
intersections5, i.e. algebras of the form

A =
k⟨x, y⟩

(xa, xy − qyx, yb)

for some a, b ⩾ 2 and 0 ̸= q ∈ k. As the ideal J = (x, y) ⊂ A can be seen to be the
unique maximal ideal of A, we conclude that A is local – and not semisimple. The fact
that it is Frobenius may be retrieved from [27, p.509].

One of the most interesting aspects of these algebras is that the case a = 2 = b

provided the first counterexample to Happel’s property: in [4], these algebras were proven
to satisfy hch.dim(A) = 2 when q is not a root of unity. However, as proved by Y. Han [6,
Proposition 5], its homology behaviour turned out to be non-pathological. They can be
viewed, thus, as one of the main motivations to adapt Happel’s question in order to get the
proposition of Han’s conjecture. With this in mind, the article of Bergh & Erdmann [27]
may be viewed as a generalization in two directions. On one hand, they showed that Han’s
property remains valid for arbitrary a and b and, on the other, that the cohomological
dimension is still equal to 2 when (and precisely when) q is not a root of unity.

Two years later, a class of algebras, which generalizes quantum complete
intersections, was also proved to satisfy Han’s property by showing that its Hochschild
homological dimension is infinite. This class is composed by finitely generated algebras
of the form

A =
k⟨x1, . . . , xn⟩
(f1, . . . , fp)

, where f1 ∈ k[x1], fi ∈ (x2, . . . , xn) for i ⩾ 2

5One motivation for this terminology is that these algebras are the “quantum version” of k[x, y]/(xa, yb),
which are examples of complete intersections rings in the sense of Commutative Algebra. Here, the word
“quantum” means that the algebra has a relation of quasi-commutativity. This meaning of “quantum” was
brought to Algebra with the introduction of quantum groups during the ’80s, see [34]. In some applications,
the parameter q is interpreted as Planck’s constant.
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and the algebra B = k[x1]/(f1) is assumed to be not smooth. Note that quantum complete
intersections are recaptured by taking n = 2, p = 3 and f1 = xa, f2 = xy− qyx, f3 = yb.
The fact that k[x]/(xa) (a ⩾ 2) is not smooth can be deduced from example 2.5 and
theorem 4.2, or by simply noting that its global dimension is infinite.

The examples of Bergh and Madsen: P. Bergh and D. Madsen published two papers,
in 2009 and 2017, showing Han’s property for some examples of finite-dimensional
algebras. The first one [28] gives three examples of graded algebras. Their proof relies
on a formula of K. Igusa – relating the Euler characteristic of relative cyclic homology
to the graded Cartan determinant – which forces them to add the assumption that the
characteristic of the ground field is zero. In the second article [31], they prove Han’s
property for trivial extensions of three different classes of algebras.

Concerning the 2009’s paper, we must say that, here, a finite-dimensional
k-algebra A being “graded” means that it has a N-grading A = ⊕i⩾0Ai and its Jacobson
radical satisfies J(A) = ⊕i⩾1Ai. This is called by some authors a semisimple N-grading,
or a non-trivial N-grading. Furthermore, the subalgebra A0

∼= A/J(A) is assumed to be
a product of copies of k.
Example 4.3. If kQ is a path algebra, where Q = (Q0, Q1) is a quiver with a set of
vertices Q0 and a set of arrows Q1, then it has a natural grading given by the length of the
paths: kQ = ⊕i⩾0kQi, where kQi is the vector subspace generated by the paths of lenght
i. We shall also write RQ to denote the ideal generated by the arrows RQ = ⊕i⩾1kQi.

1. If Q does not have oriented cycles (i.e. kQ is finite-dimensional), then, indeed,
J(kQ) coincides with RQ and kQ0 is the sum of |Q0| copies of k.

2. To obtain quotients with the same properties, we can take an admissible ideal
I ⊂ kQ, i.e. such that Rm

Q ⊆ I ⊆ R2
Q for some m ⩾ 2. In this manner,

A = kQ/I is finite-dimensional (even if Q has cycles) and J(A) = RQ/I , see
[11, 2.12]. In order to preserve the grading of kQ, we must also assume that I
is homogeneous, i.e. its generators are linear combinations of paths of the same
length. Thus, A = kQ/I has a semisimple N-grading induced from kQ with
A0
∼= A/J(A) ∼= kQ/RQ

∼= k⊕Q0 .
3. If A/J(A) is a product of copies of k, then, by Wedderburn’s Splitting Theorem,

we have that A = A/J(A) ⊕ J(A). In this manner, A0 = A/J(A), A1 = J(A)

and Ai = 0 for i ⩾ 2 provides us a grading as required above if, and only if, A is
a radical square-zero algebra (i.e. J(A)2 = 0).

With this in mind, we will make some comments about two of the three classes
considered in the article. For the first one, since the authors already present its definition,
we solely mention that the notion of N -Koszul algebras (where N ⩾ 2 is an integer) is a
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direct generalization of the characterization of Koszul algebras given in [35, Prop. 2.1.3].
The ordinary case is retrieved when N = 2.

The second class of examples is given by quotients A = kQ/I where I is an
admissible homogeneous ideal and Q is a quiver with some loop (i.e. an arrow which
starts and ends at the same vertex). The fact that they always have infinite global
dimension is an instance of what is known as the “no loops conjecture”. In [36, 4.4, 4.5,
5.5], K. Igusa proved the conjecture for any admissible quotient of quiver algebras and for
every algebra over an algebraically closed field6. In this manner, Han’s property is, again,
proved after showing that the Hochschild homological dimension for these algebras is
infinite.

Restricting to local algebras, this gives us the following immediate consequence,
which is much stronger than Han’s property:

Corollary 4.4. Assume that char(k) = 0 and A = kQ/I is local, where I is an admissible
homogeneous ideal. If hh.dim(A) is finite, then A ∼= k.

Proof. Since A is local, it follows that 0 and 1 are its only idempotents, cf. [9, 19.2].
Thus, Q has only one vertex. By the above, in order to hh.dim(A) be finite, we also know
that Q cannot have loops. Therefore, Q also does not have arrows.

Now, let us focus our attention in Bergh and Madsen’s second article. It is
concerned with the trivial extension of a finite-dimensional algebra A by its dual D(A) :=

Homk(A, k), considered as a A-bimodule. This algebra is denoted by T (A) = A⋉D(A),
its vector space structure is defined to be A⊕D(A) and its multiplication is given by

(a, f) · (b, g) = (ab, ag + fb), a, b ∈ A, f, g ∈ D(A).

These algebras receive the word “trivial” in the name, because they are related with the
zero element in the cohomology group HH2(A,D(A)), as it can be seen in [7, p.312].

One notable feature of these trivial extensions is that they are symmetric algebras
[12, 16.62] with Jacobson radical given by J(A)⊕D(A). Thus, they are non-semisimple
self-injective algebras, so that gldim(T (A)) =∞ for every A ̸= 0. Therefore, once again
it must be shown that their Hochschild homological dimensions are infinite.

Now, we sketch some ideas of the proof. The authors start by giving a presentation
of T (A) as an admissible quotient of a path algebra – where it was necessary to assume the
field to be algebraically closed. Using a criteria proved in a joint work with Y. Han [31,

6Taking into consideration Gabriel’s construction of the quiver of an algebra A (over an algebraically
closed field), we say that it has a loop if Ext1A(S, S) ̸= 0 for some simple module S, see [16, 4.1.6] or [11,
section II.3]. Noticeably, if A is a path algebra, this equivalent to saying that its quiver contains a loop.
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Theorem 3.1] – namely, that kQ/I (I admissible) has infinite Hochschild homological
dimension whenever it has a 2-truncated cycle – they established Han’s property for T (A)
if A is either local or self-injective. At the end of the article, the property for T (A) was
proved when A is graded by utilizing techniques from 2009’s article – in terms of the
graded Cartan determinant.

Weyl algebras: In comparison to the examples above, this class is rather exceptional.
The nth Weyl algebra An(k) (over a field k) is a certain infinite-dimensional noetherian
noncommutative algebra. Its properties are considerably distinct relative to the field
chosen: for example, in zero characteristic, An(k) is a simple domain, but this is no
longer true when fields of positive characteristic are considered. The global dimension
can also measure these kind of differences (see [37, Corollary 5.3]):

gldim(An(k)) =

n, if char(k) = 0

2n, if char(k) > 0
.

In [30], assuming char(k) = 0, the authors proved Han’s and Happel’s property
for the quantum case of a class that generalizes the first Weyl algebra A1(k) – while the
ordinary non-quantum case was treated ten years prior [38]. More explicitly, Hochschild
(co)homology was computed for these algebras, and a criterion determining when its
global dimension is finite was given. Summing up, they proved that

gldim(A) <∞ ⇐⇒ hh.dim(A) ⩽ 2 ⇐⇒ hch.dim(A) ⩽ 2.

When this is the case, it was also shown that most of them satisfy gldim(A) = 2.

4.2. Preservation of Han’s property by Extensions

Recently, some authors gave contributions for the understanding of Han’s conjecture in a
distinct way from above. Having in mind, for example, a possible inductive step in order
to prove the conjecture, many efforts were given in the following direction: encountering
extensions of algebras that preserves Han’s property, i.e. pairs of algebras B ⊆ A such
that, if B satisfy Han’s property, then A also satisfy it. We summarize these in table 3.
For instance, with such results, one can construct from the previous examples many other
algebras satisfying Han’s property.

Null-square algebras: In [39], the authors analyse null-square algebras, which are
constructed using two algebras A and B, one A-B-bimodule N and one B-A-bimodule
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Type of Extension Assumption over the field Reference

corner algebras perfect [39, Theorem 2.21]

E-triangular algebras perfect [39, Corollary 2.22]

null-square projective algebras perfect [39, Theorem 4.8]

bounded - [40, Theorem 4.6]

strongly proj-bounded - [41, Corollary 6.17]

Table 3. Extensions of finite-dimensional algebras which preserves Han’s
property. The list is organized in chronological order of the references.

M . They are of the form [
A N

M B

]
,

where the matrix multiplications are given by the bimodule structure of M and N and the
convention mn = nm = 0 for all m ∈ M,n ∈ N . In this way, the algebra above is an
extension of A×B.

• If N = 0, then it is called a corner algebra

• If M and N are projective bimodules, we call it a null-square projective algebra.

Provided the field is perfect, it was proved that, if A and B are finite-dimensional
algebras satisfying Han’s property, then extensions for both types above also satisfy Han’s
property. For the case of corner algebras, property 2.10 was used in order to reduce its
homology to the ones of A and B.

Bounded and proj-bounded extensions: An extension of algebras B ⊆ A is said to be
bounded if:

1. A/B is of finite projective dimension as a B-bimodule

2. A/B is a left or right projective B-module.

3. A/B is tensor-nilpotent over B, i.e. (A/B)⊗Bn = 0 for some n

After a series of papers [42, 43, 40], Cibils, Lanzilotta, Marcos and Solotar proved
that if we have such an extension, then

B satisfies Han’s property ⇐⇒ A satisfies Han’s property

(without the necessity of assuming A or B to be finite-dimensional). In this manner, given
an algebra we may analyse it by associating an easier algebra, and it can be chosen to be
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either smaller or bigger7. More recently, this was generalized for “strongly proj-bounded”
extensions.

The authors also provide some criteria in order to recognize if certain extensions
satisfy the last two conditions of the definition, see [40, Theorems 5.16, 5.20]. Using
them, some interesting examples could be given.
Example 4.5. Suppose that A is an extension of B = kQ/I (I an admissible ideal) given
by adding arrows to the quiver Q and some possible relations.

1. The case when only arrows are added – and no new relations – was treated
previously in [44] and can be seen as the motivating example for the development
of bounded extensions. In this case, A is isomorphic to the tensor algebra (over
B) TB(N) for some projective B-bimodule N . Hence, this extension satisfies a
property stronger than the first two conditions in the definition: A/B is projective
as a B-bimodule. The last condition is also satisfied when A is finite-dimensional.

2. [40, Example 6.2] Define B = kQ for the quiver Q below

2 3

5 1 4

d

µ b

c

and take the extension A = kQ̃/J , where Q̃ is given by adding the arrow 1
a−→ 2

in Q and J = ⟨da − cb⟩. It can be proved that this extension is bounded. Since
Q̃ does not have oriented cycles, one of the criteria cited above guarantees that
A/B is tensor-nilpotent. The fact that A/B has finite projective dimension as a
(B ⊗Bop)-module follows from proposition 3.2:

gldim(B ⊗Bop) = 2 · gldim(B) = 2.

In order to prove their result, the authors used a so-called Jacobi-Zariski long
nearly exact sequence, which relates the Hochschild homology (of algebras B and A) with
the relative Hochschild homology (of A with respect to B). When B ⊆ A is bounded,
this sequence turns out to be exact (in higher degrees). This permits one to conclude that
HHn(B) and HHn(A) are isomorphic for big enough values of n, see [40, p.52]. In
this way, Relative Homology – a theory introduced by G. Hochschild in 1956 [45] but
still little used for associative algebras – is utilized as a fundamental tool in the proofs.
Actually, the very own definition of strongly proj-bounded extensions – for which, now,
we turn our attention – is made in relative homological terms.

7It may seem strange to think that a bigger algebra may be simpler, but, as we have already seen, trivial
extensions of self-injective algebras are known to satisfy Han’s property even though we do not have an
answer for self-injective themselves. Unfortunately, trivial extensions are not bounded usually.
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Definition 4.6. An extension B ⊆ A is strongly proj-bounded if it satisfies items 1 and 2
from the definition of bounded extensions and, in addition:

3. there exists some p ∈ N such that (A/B)⊗Bn is a projective B-bimodule for all
n > p.

4. A, seen as a A-bimodule, has finite B-relative projective dimension.

Both conditions above are satisfied if A/B tensor-nilpotent, because 0 is projective
and, as it can be seen in [43, Proposition 2.3], there is a B-relative projective resolution
of A whose length is smaller than m if (A/B)⊗Bm = 0. So, this is, indeed, a
generalization of the notion of bounded extensions. In [41, section 4.2], examples of
strongly proj-bounded extensions of finite-dimensional algebras which are not bounded
are presented. Here, we restrict ourselves just to a simpler one.

Example 4.7. 1. If B is separable (e.g. B = k) and A = B × B, then A/B = B is
not tensor-nilpotent. However, since B ⊗ Bop is semisimple, we have that A/B
is projective as a B-bimodule. Using that B-relative projectivity is the same as
ordinary projectivity when B is semisimple, we can conclude that B ⊂ A is
strongly proj-bounded.

2. The following example shows that, outside the realm of finite-dimensional
algebras, the definition of bounded extensions is much more restrictive. Taking
A = k[x] and B = k, we conclude once again that A/B is projective as a
B-bimodule, so that the first three conditions of the last definiton are satisfied.
Besides that, we have the following exact sequence

0→ k[x, y]
·(x−y)−−−→ k[x, y]→ k[x]→ 0,

so that the projective dimension of A as a A-bimodule is ⩽ 1. However, this
extension is not bounded, since A/B = x · k[x] is not tensor-nilpotent.

5. Frontiers of Han’s conjecture

Having said much about the results already shown towards Han’s conjecture, we conclude
the article with a few comments on possible future steps.

As noted in section 4.1, many of the examples which were proved to satisfy
Han’s property are Frobenius: group algebras, exterior algebras, quantum complete
intersections, trivial extensions. Therefore, this class of algebras in general seems to
be an appealing option to be analysed next. For a more concrete approach, one could start
considering some specific cases: for instance, to analyse if the proof for group algebras
could be carried out for finite-dimensional Hopf algebras in general. Another possibility
would be to focus solely on symmetric algebras while, for a broader setting, self-injective
algebras could be chosen as objects of study.
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In another aspect, it could be interesting to investigate upper bounds for the
realm of algebras satisfying Han’s conjecture (which is stated only for finite-dimensional
ones). For instance, there are many algebras of finite global dimension whose Hochschild
homology is not concentrated in degree zero. For this, one can take Weyl algebras, which
were considered above, or even polynomial algebras [7, Ex. 9.1.3]:

gldim(k[x1, . . . , xn]) = hh.dim(k[x1, . . . , xn]) = n

In this manner, finite global dimension implying in zero Hochschild homological
dimension seems to be a behavior really restricted to finite-dimensional algebras. That
said, Han’s property (and its converse) is still valid for both examples above.

In [41], a counterexample to it was given after considering pseudocompact
algebras, i.e. topological algebras which are given by an inverse limit of
finite-dimensional algebras (considered with discrete topology).

Example 5.1. [41, Remark 6.18] Taking the quiver with infinite vertices below

Q : 1←− 2←− 3←− · · · ,

and the ideal I = R2
Q generated by paths of lenght two, the pseudocompact algebra

A = k[[Q]]/I satisfies gldim(A) =∞ and hh.dim(A) = 0

In opposition to this, it can also be shown that there are certain pseudocompact
algebras, obtained from profinite groups, which actually satisfy Han’s property, see [46,
Section 4.4].

As it can be seen, the example above is not finitely generated nor noetherian. So,
this gives a motivation to analyse (if there are any) counterexamples for Han’s property
in the following classes generalizing finite-dimensional algebras: noetherian, finitely
generated, and artinian.
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[46] Cruz GC. Homologia de Álgebras Pseudocompactas: as fronteiras da conjectura
de Han. Universidade de São Paulo; 2023. Available from: https://doi.org/
10.11606/D.45.2023.tde-20062023-140944.

93

https://doi.org/10.5802/aif.1950
https://doi.org/10.5802/aif.1950
https://doi.org/10.1512/iumj.2021.70.8402
https://doi.org/10.1016/j.jalgebra.2022.01.022
https://doi.org/10.1016/j.jalgebra.2022.01.022
https://doi.org/10.2140/pjm.2020.307.63
https://doi.org/10.1112/blms.12516
https://doi.org/10.1112/blms.12516
https://doi.org/10.1090/proc/14936
https://doi.org/10.1090/proc/14936
https://doi.org/10.2307/1992988
https://doi.org/10.2307/1992988
https://doi.org/10.11606/D.45.2023.tde-20062023-140944
https://doi.org/10.11606/D.45.2023.tde-20062023-140944

	Introduction
	Homology of Associative Algebras
	Statement of Han's conjecture
	(Partial) Answers to Han's Conjecture
	Algebras satisfying Han's or Happel's property
	Preservation of Han's property by Extensions

	Frontiers of Han's conjecture
	Acknowledgments

