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Abstract. The change point problem arises in various practical fields such as economics,
engineering, medicine, quality control, statistical process control, and financial time
series. The aim of this study is to detect location and time of change point at which
the behavior of underlying statistical models changes in mean, variance or some other
influential parameters. Change point detection methods are divided into two main
branches: online methods, that aim to detect changes as soon as they occur in a real-time
setting and offline methods that retrospectively detect changes when all samples are
received. In practice, there are many parametric (including maximum likelihood and
information criterion) and non-parametric methods. Bayesian change point detection
introduces a modular Bayesian framework for online estimation of changes in the
generative parameters of sequential data. Time series analysis has become increasingly
important in diverse fields including medicine, aerospace, finance, business, meteorology,
and entertainment. Time series data are sequences of measurements over time describing
the behavior of systems. These behaviors can change over time due to external events
and/or internal systematic changes in dynamics/distribution. In the current paper, change
point analysis in AR(1) is studied using the optimal stopping technique. The logit of
probability of having a change at a specific time is studied using the Bayesian and
non-Bayesian methods. Snell envelopment method is applied to locate the possible
change. Finally, concluding remarks are proposed.
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1. Introduction

The first order autoregressive process AR(1), has been widely used and implemented in
time series analysis. Different estimation methods have been employed in order to estimate the
autoregressive parameter. The AR(1) process is an important building block of Box-Jenkins
approach of time series modeling. As a first-order Markov linear dependence between data,
the AR(1) has been played critical role to model the local trends of financial series such as
stocks, shares and exchange rates. Different type of estimation methods for the AR(1) process
have been developed and proposed in literature. Frequent estimation methods, including method
of moments estimation (MME), conditional least squares estimation (CLS), exact maximum
likelihood estimation (MLE), and conditional maximum likelihood estimation (CMLE) are
commonly used, see [1]. To improve the current estimation procedures, specifically for small
samples, a Bayesian method of estimation is considered for the AR(1) model. In general, reasons
involving Bayesian approach in time series analysis are; firstly, this approach can successfully
provide logical interpretation for statistical inferences in time series analysis, and secondly, results
can always be updated based on assimilation of new information. Autoregressive models are
statistical models used for time series analysis, where current values are predicted based on a
linear combination of past values, see [2]. These models assume that past behavior influences
future outcomes, making them useful for forecasting trends and patterns in data over time. A
statistical model is autoregressive if it predicts future values based on past values. For example, an
AR(1) model might seek to predict a stock’s future prices based on its past performance.

Because of frequent changes in economic and financial environments, parameters of AR(1)
may have time varying structures. For example, in practice, it is necessary to check the stability
of AR(1) model over the time. For example, the slope parameter of AR(1) series is suspected to
change throughout the time passes. Let

Xi = βiXi−1 + ϵi, i ≥ 2,

be the dynamic AR(1) process at which |βi| < 1 (stationary condition of process) ϵt is a sequence
of independent and identically distributed (iid) random variables with zero mean and standard
deviation σϵ < ∞. Observing the first n data Xi, i = 1, . . . , n, it is interested to test the null
hypothesis of no change point

H0n : βi = β, i = 1, . . . , n

vs. the alternative AMOC (at most one change point) hypothesis

H1n : βi = β, i = 1, . . . , κ and βi = β + δ, i = κ+ 1, . . . , n.

Here, δ is the unknown magnitude of change and κ is the random change point with prior
probabilities πi = P (κ = i), i ≥ 1 The change point analysis for time series, specially
AR(1) series, has received considerable attention applying various statistical methods, see [3]
and references therein for a comprehensive review. To detect the change point in AR(1) process
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under the Bayesian setting, we use the optimal stopping technique, which is a special type of
optimal control methods. Optimal control refers to solving problems where decisions are made
continuously over time, considering changing information, by using the concept of ‘cost-to-go’ to
minimize integrated costs from a current state to a target state. The theory of optimal stopping
is concerned with the problem of choosing a time to take a given action based on sequentially
observed random variables in order to maximize an expected payoff or to minimize an expected
cost. Problems of this type are found in the area of statistics, where the action taken may be to test
a hypothesis or to estimate a parameter, and in the area of operations research, where the action
may be to replace a machine, hire a secretary, or reorder stock, etc.

In the current paper, the change point problem in AR(1) process is studied using the optimal
stopping time theory. In the next section, change point analysis, using Bayesian (see [4]) and
non-Bayesian approach are studied and concluding remarks are given in section 3.

2. Two approaches

Here, the change point detection using the optimal stopping method, based on two
non-Bayesian and Bayesian approaches is presented.

2.1. Preliminaries

Following Veeravalli and Banerjee [5], let Xn
1 = (X1, . . . , Xn) observations up to time n

and the posterior probability
pn = P (κ ≤ n|Xn

1 )

denote that a change has been occurred before the n-th observation. Throughout the current paper,
conditional probabilities and expectation with respect to Xn

1 is equivalent to these conditional
quantities given the information set (σ-field) generated by Xn

1 and are used exchangeable. Then,
the Bayesian theorem implies that

pn+1 = P (κ ≤ n+ 1|Xn
1 , Xn+1)

is proportional to
f1(Xn+1|Xn

1 , κ ≤ n+ 1)p̃n,

at which
p̃n = P (κ ≤ n+ 1|Xn

1 )

and f1 is the conditional density of observations after the change point. Clearly, given κ ≤ n+ 1,
the density f1 reduces to f1(Xn+1|Xn) (since change has occurred at n + 1 time or before that).
Also,

p̃n = pn + P (κ = n+ 1|Xn
1 ).

To compute
P (κ = n+ 1|Xn

1 ),
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notice that Xn
1 says that if κ > n or not? In the case of κ > n, probability of κ = n+1 is measured

via prior distributions. Thus,

p̃n = pn + P (κ = n+ 1|κ > n)P (κ > n|Xn
1 ) = pn + γn+1(1− pn),

where
γn+1 = P (κ = n+ 1|κ > n) =

P (κ = n+ 1)

P (κ > n)
=

πn+1∑
j≥n+1 πj

∈ (0, 1).

As soon as,
πi = ρ(1− ρ)i−1

be the geometric prior, then γn = ρ. One can see that the posterior ratio Yn+1 is

Yn+1 =
pn+1

1− pn+1

=
p̃n

1− p̃n
∆n+1,

where ∆n+1 is the likelihood ratio
f1(Xn+1|Xn)

f0(Xn+1|Xn)
.

From a practical point of view, when pn is close to 1, then, Yn converges to infinity. To overcome
this difficulty, a refinement as

Yn =
pn

1− pn + 0.05

is considered. Then, the maximum value of Yn when pn ≈ 1, is 20. Here f0 is the conditional
density of observations before the change point. However, one can see that

p̃n
1− p̃n

=
1

1− γn+1

pn
1− pn

+
γn+1

1− γn+1

.

Thus,

Yn+1 =

(
1

1− γn+1

Yn +
γn+1

1− γn+1

)
∆n+1.

Since Yn is increasing function of pn, thus, the large values of Yn (equivalently, pn) indicates
existence of a change at time n. Indeed, a stopping time τ is found at which E(Yτ ) attains
its maximum. A stopping time (referred also as Markov time) is a random time at which
a stochastic process is stopped (controlled). Generally, stopping time techniques are used to
derive the statistical properties of hitting time, exit time, up-crossing, and first passages; to prove
the maximal inequalities and variants of optional sampling theorems; to propose distribution of
maximum or minimum of a specific process, and to study the behavior of stopped process. Usually,
Dynkin theorems and local martingales are closely related to stopping time techniques. Financial
applications of stopping times are American option pricing and decision about its early exercise,
financial trading and detection of momentum time, analyzing Dynkin game and Israeli option
pricing. Stopping times and stopped process have increasingly applications in control engineering
and signal processing fields, see [6].
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Here, p0 = 0, hence, Y0 = 0; thus,

Y1 =
γ1

1− γ1
∆1.

Under the null hypothesis, since all Xn’s are distributed as f0, then,

E(∆n|Fn−1) =

∫
f1(xn)

f0(xn)
f0(xn)dxn = 1, for each n,

however, when Xn comes from f1 (say, observations after the change, under the alternative
hypothesis), then

E(∆n|Fn−1) =

∫
f1(xn)

f0(xn)
f1(xn)dxn

may be larger or smaller than 1.

2.2. Non-Bayesian approach

Suppose that γn for each n is close to zero, then, Y1 = ∆1 and

Yn+1 = ∆n+1Yn.

Here, Yn reduces to the likelihood ratio statistic. In this case, under the null hypothesis,

E(Yn+1 | Fn) = Yn,

where Fn is the information set generated by Y n
1 . Thus, Yn is a martingale process. Using the

optional sampling theorem, for each finite stopping time τ , we have:

E(Yτ ) = E(Y1) = E(∆1) = 1.

Thus, there is no stopping time such that E(Yτ ) attains its maximum.

Remark 2.1. Notice that
log(Yi) = log(Yi−1) + log(∆i).

Under the null hypothesis, as soon as

E(log(∆i)) = 0,

then log(Yi) is a random walk, and renewal theory in optimal stopping of Veeravalli and Banerjee
[5] is applicable, as follows. Before that, to make sure that E(log(∆i)) is small, notice that, as f1
is close to f0, then, clearly, it gets small. To see this fact in detail, suppose that f0(xi|xi−1) is the
density of the normal

N(βxi−1, σ
2)
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distribution and f1(xi|xi−1) is the density of

N((β + δ)xi−1, σ
2)

distribution. Then,

log(∆i) =
δ

σ2
(xi − βxi−1 − 0.5δxi−1).

Thus, as soon as δ converges to zero or σ2 → ∞, then log(∆i) tends to zero. Let

yi = log(Yi), τ = inf{i | yi ≥ b}, and τ+ = inf{i | yi ≥ 0}.

Then
lim
b→∞

P (yτ − b > u) = (E(yτ+))
−1

∫ ∞

u

P (yτ+ > x) dx,

see Theorem 2.5 of Veeravalli and Banerjee [5].

2.2.1. Snell envelopment

Under the alternative hypothesis, the Snell envelopment procedure may be applied to find
the possible location of the change point. To this end, notice that

gi = max(Yi, E(gi+1|Fi)); gn = Yn.

One can see that
E(gn | Fn−1) = E(∆n|Fn−1)Yn−1.

Because of the Markov property of ∆n, then E(∆n|Fn−1) is a function say θn−1(·) of Xn−1. Thus,

E(gn|Fn−1) = θn−1(Xn−1)Yn−1.

It is also seen that
gn−1 = max (1, θn−1(Xn−1))Yn−1.

Let ℵn−1(Xn−1) = max(1, θn−1(Xn−1)). Therefore,

gn−1 = ℵn−1(Xn−1)Yn−1.

As follows, using the Snell recursive structure, we derive the functional forms of the functions
θi(Xi) and ℵi(Xi). To this end, by taking the expectation, it is seen that

E(gn−1|Fn−2) = E(ℵn−1(Xn−1)∆n−1Yn−2|Fn−2)

= E(ℵn−1(Xn−1)∆n−1|Xn−2)Yn−2

= θn−2(Xn−2)Yn−2.
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Hence, the next backward gn−2 is given by

gn−2 = max(1, θn−2(Xn−2))Yn−2 = ℵn−2(Xn−2)Yn−2.

Generally, using induction, the auxiliary process of the Snell procedure is identified by two
functions θi(Xi) and ℵi(Xi); i.e.,

gi = ℵi(Xi)Yi.

One can see that

ℵi(Xi) = max(1, θi(Xi)),

θi(Xi) = E(ℵi+1(Xi+1)∆i+1|Xi),

where

ℵn(Xn) = 1, θn−1(Xn−1) = E(∆n|Xn−1), and ℵn−1(Xn−1) = max(1, θn−1(Xn−1)).

By finding θi(Xi) and ℵi(Xi), the rule of change point detection by the Snell procedure is found.
It is seen that, before the actual change, all ℵi(Xi) and θi(Xi) are one. However, after the change,
a shift occurs in gi’s and the first (stopping) time at which E(Yτ ) attains its maximum is κ itself.

2.2.2. Second criterion

Following Veeravalli and Banerjee [5], another version of the test statistic Yn is given. First,
assume that f0 and f1 are completely known. Then,

Yn =

∑n
i=1 πi

∏i
j=1 f0(xj|xj−1)

∏n
j=i+1 f1(xj|xj−1)(∑∞

i=n+1 πi

)∏n
j=1 f0(xj|xj−1)

=

∑n
i=1 πi

∏n
j=i+1 ∆j∑∞

i=n+1 πi

.

It is easy to see that

Yn+1 =

(
πn

Πn+1

+
Πn

Πn+1

Yn

)
∆n+1,

where

Πn =
∞∑

i=n+1

πi.

As
Πn

Πn+1

→ 1 and
πn

Πn+1

→ 0,

the Bayesian test statistic reduces to the likelihood ratio test statistic. Next, in the case of small δ
(local change), then

log(∆n+1) = log(fβ+δ(xn+1|xn))− log(fβ(xn+1|xn)) ≈
∂

∂β
log(fβ(xn+1|xn)),
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where β is the unknown parameter before the change point which is changed to β + δ after the
change point.

For example, if f0 is normal, then

log(∆n+1) ≈
δ

σ

(
xn+1 − βxn

σ

)
= λzn+1,

where
zn+1 =

xn+1 − βxn

σ

and assume that λ = δ
σ

is known. Therefore, logit(Yn+1) is a random walk as follows:

logit(Yn+1) = logit(Yn) + λzn+1.

Therefore, the posterior probability of having a change at some time n depends on its value in
previous time and λ. Let

β̂n =

∑n
j=2 XjXj−1∑n
j=2X

2
j−1

be the least squares estimate of β, under H0n. Under the null hypothesis, we used all samples from
1 to n to derive β̂n. In this way, zn+1 is estimated by

xn+1 − β̂nxn

σ̂n

.

Here, another version of Yn based on the estimated residual process ei is given by

ei = Xi − β̂nXi−1 = ϵi − (β̂n − β)Xi−1, i ≥ 2.

To this end, consider that:

i) Under the alternative hypothesis, assuming the change point is i, the parameters before and
after the changes are estimated by

β̂i =

∑i
j=2XjXj−1∑i
j=2 X

2
j−1

, β̂∗
i =

∑n
j=i+1 XjXj−1∑n
j=i+1X

2
j−1

.

ii) Let fϑ(xj|xj−1) be the density of the Normal distribution N(ϑxj−1, σ
2) computed at xj .

Therefore, notice that

Yn =

∑n
i=1 πi

∏i
j=1 fβ̂i

(xj|xj−1)
∏n

j=i+1 fβ̂∗
i
(xj|xj−1)(∑∞

i=n+1 πi

)∏n
j=1 fβ̂n

(xj|xj−1)
.

First, assume that σ2 is known. By some algebraic manipulation, it is seen that:

Yn =

∑n
i=1 πi exp

(
1

2σ2Li

)(∑∞
i=n+1 πi

) ,
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where

Li =
n∑

j=1

(xj − β̂nxj−1)
2 −

i∑
j=1

(xj − β̂ixj−1)
2 −

n∑
j=i+1

(xj − β̂∗
i xj−1)

2.

Following Pan et al. [7], notice that:

n∑
j=1

(xj − β̂nxj−1)
2 =

i∑
j=1

(xj − β̂ixj−1 + (β̂i − β̂n)xj−1)
2 +

n∑
j=i+1

(xj − β̂∗
i xj−1 + (β̂∗

i − β̂n)xj−1)
2.

Let

si =
i∑

j=1

x2
j−1, wi =

si
sn

.

Therefore,
Li = si(β̂i − β̂n)

2 + (sn − si)(β̂
∗
i − β̂n)

2.

Notice that

β̂∗
i =

β̂n − wiβ̂i

1− wi

.

So,
Li = sn

wi

1− wi

(β̂i − β̂n)
2.

Also,

β̂i − β̂n =

∑i
j=1 xj−1ej

snwi

.

Hence

Li =

(∑i
j=1 xj−1ej

)2

snwi(1− wi)
.

By replacing σ̂2 = 1
n

∑n
j=2 e

2
j , it is seen that

Yn =

∑n
i=1 πi exp

(
t2i
2sn

)
∑∞

i=n+1 πi

,

where

ti =

∑i
j=1 xj−1ej

σ̂
√
wi(1− wi)

.

Lemma 2.2. Under H0n, given β̂n, the residual process ek is an ARMA time series, presented by

ei = βei−1 + ϵi + β̂nϵi−1.

The moments of et are as follow

E(ei) = 0, var(ei) =
1 + 2βE(β̂n) + E(β̂2

n)

1− β2
,
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and

cov(ei, ei−h) =


E((β̂n+β)(β̂n+β+1))

1−β2 σ2
ϵ , |h| = 1,

βE(eiei−h+1|β̂n)σ
2
ϵ , |h| > 1.

Proof. It is easy to see that:

ei − βei−1 = Xi − βXi−1 − β̂n(Xi−1 − βXi−2).

Since ϵi is independent of β̂n, ei is an ARMA process. Thus,

E(ei|β̂n) = 0, var(ei|β̂n) =
1 + 2ββ̂n + β̂2

n

1− β2
.

Hence,
E(ei) = E(E(ei|β̂n)) = 0,

and

var(ei) = E(var(ei|β̂n)) + var(E(ei|β̂n)) =
1 + 2βE(β̂n) + E(β̂2

n)

1− β2
.

Regarding the covariance terms, we know that

E(eiei−h|β̂n) =
(β̂n + β)(β̂n + β + 1)

1− β2
σ2
ϵ if |h| = 1,

and
E(eiei−h|β̂n) = βE(eiei−h+1|β̂n)σ

2
ϵ if |h| > 1.

Thus, taking the expectations on both sides proves the lemma.

Remark 2.3. The partial sum process of ei is given by

Qi =
i∑

j=2

Xj−1ej.

Empirically, it is seen that, under H0n, the plot of Qi against the number of observations i oscillates
around zero. It remains between two specified boundaries with high probability. However, when
there is a change in the slope parameter, the plot of Qi creates a peak out of the boundary.

2.3. Bayesian Approach

Notice that
Yi = (aiYi−1 + bi)∆i,

where
ai =

1

1− γi
and bi =

γi
1− γi

.
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Under the null hypothesis, it is seen that

E(Yi|Fi−1) = aiYi−1 + bi.

Thus, Yi is not a martingale. Suppose that

Zi = ciYi + di

is a martingale. Therefore,

E(Zi|Fi−1) = ciaiYi−1 + cibi + di = ci−1Yi−1 + di−1.

To make sure the above equation holds, it suffices to assume that

ciai = ci−1, cibi + di = di−1.

It is seen that

ci = c0
1∏i

j=1 aj
= c0

i∏
j=1

(1− γj), di = d0 −
i∑

j=1

cjbj.

One can see that Zi is a decreasing function of Yk. Thus,

Ui = −Zi

is an increasing function and martingale. Hence, there is no stopping time that E(Uτ ) gets its
maximum value. However, under the alternative hypothesis, assuming E(∆n|Xn−1) > 1, the first
point at which E(Uτ ) attains its maximum is κ itself.

2.3.1. Asymptotic envelopment

Here, following Lustri et al. [8], the asymptotic expression for the expectation of Snell
envelopment sequences hi is derived. In what follows, the optimal stopping time is searched to
maximize E(Yτ ). Before going ahead, the following lemma is proposed, which is necessary for
asymptotic envelopment.

Lemma 2.4. For every continuous random variable X and positive real number a, then

E(max(X − a)) =

∫ ∞

a

P (X > x) dx.

Notice that
hi = max(Yi, E(hi+1|Fi)); hn = Yn.

Let
Wi = E(hi+1|Fi) and E(hi) = µi.
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Suppose that the variance of hi is small. Since

var(Wi) ≤ var(hi),

it follows that var(Wi) is small. Therefore, hi is close to its expectation, µi. Notice that

E(Wi) = µi+1.

Write hi as
hi = Wi +max(Yi −Wi, 0).

Therefore, by taking the expectation on both sides, see Shah [2], it is seen that

µi = µi+1 + E(max(Yi − µi+1 − (Wi − µi+1), 0)).

Notice that since the variance of Wi − µi+1 is small and its expectation is zero, then this term is
negligible, see Fathan and Delage [9]. Therefore,

µi = µi+1 + E(max(Yi − µi+1, 0)) = µi+1 +

∫ ∞

µi+1

ζi(z)dz,

where
ζi(z) = P (Yi > z).

Following Lustri et al. [8], then,

µ′
i ∼ −

∫ ∞

µi

ζi(z) dz and ζi(µi) ∼
µ′′
i

µ′
i

.

Also, let
φi = E(Yi|Fi−1).

Then,

φ′
i ∼

∫ ∞

µi

P (Yi > z|Fi−1)dz.

The notation µ′
i and µ′′

i represent the first and second derivatives of µi with respect to i.
Additionally, the notation ui ∼ wi indicates that the asymptotic behaviors of ui and wi are the
same.

Remark 2.5. One can notice that ∫ ∞

µi

ζi(z) dz = E(Yi − µi)+,

where x+ = max(x, 0). Then,
µ′
i ∼ −E(Yi − µi)+.

LAJM v. 03 n. 01 (2024) 30



Latin American Journal of Mathematics (ISSN 2965-0798)

Also, a numerical approximation of the equation

ζi(µi) ∼
µ′′
i

µ′
i

is given by
µi − 2µi−1 + µi−2

µi − µi−1

= ζi(µi−2).

To derive the asymptotic Snell envelopment, it is assumed that the variance of hi is small. To
survey this assumption more precisely, notice that

hi = max(Yi, E(hi+1|Fi)).

Therefore,
E(hi) ≥ E(hi+1).

Given Fi, the covariance of hi+1 + hi and hi+1 − hi is positive. Thus,

E((hi+1 + hi)(hi+1 − hi)|Fi) ≥ E((hi+1 + hi)|Fi)E((hi+1 − hi)|Fi).

Therefore, it is seen that

E(h2
i+1 − h2

i |Fi) ≥ (hi + E(hi+1|Fi))(E(hi+1|Fi)− hi).

Before the argmax of hi, say τ , we know that

E(hi+1|Fi) = hi,

and hence,
E(h2

i+1|Fi) ≥ E(h2
i |Fi).

By taking the expectation on both sides, it is concluded that

E(h2
i+1) ≥ E(h2

i ).

So,
var(hi+1) ≥ var(hi).

Indeed, before τ , the variance of hτ = Yτ is the maximum of var(hi). After τ (i.e., i ≥ τ ), if
hi = Yi, then their variances are equal, and if

hi = E(hi+1|Fi),

then
var(hi+1) ≥ var(hi).
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Two cases happen: if for all i ≥ τ ,

var(hi+1) ≥ var(hi),

then the variance of all hi is less than the variance of hn = Yn, and if for some i, hi = Yi, then
their variances are equal. So to ensure that the variance of hi is small, it is enough to ensure that
the variance of Yi is small.

Remark 2.6. A necessary condition for the variance of Yi to converge to zero is

Yn

n∏
j=i+1

(1− γj)∆
−1
j →p 0,

as n → ∞, for each i > 0. Notation →p stands for convergence in probability. To see that, notice
that

Yi+1 = (ai+1Yi + bi+1)∆i+1 ≥ ai+1Yi∆i+1.

Therefore,
Yi

Yi+1

≤ (1− γi+1)∆
−1
i+1.

By solving this recursive, it is seen that

Yi

Yn

≤
n−1∏

j=i+1

(1− γj+1)∆
−1
j+1.

Notice that, assuming f1 is close to f0, before the change, ∆−1
j+1 is close to 1 and after the change

it is close to zero. Under H1n, for large n, Yn is bounded by 20. Thus, Y 2
i is bounded by an upper

bound that converges to zero in probability. Therefore,

var(Yi) ≤ E(Y 2
i )

is small.

3. Concluding remarks

In this paper, the change point detection in AR(1) process is studied. The Bayesian and
non-Bayesian settings are proposed. The change point is considered the first point at which a
process is optimized. Therefore, the optimal stopping techniques are applicable. The underlying
process for change point analysis is AR(1), because the likelihood ratio process and posterior
process is better approximated and the Snell envelopment procedure is better done. However,
methods applied here can be extended to AR(p) process, straightforward. Some advantages of this
paper are described as follows:

1. The probability of n-th point being the change point is represented as a recursive relation
which shows the effects magnitude of change, change point locations, and variances of
sequence in the performances of proposed method.
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2. In the non-Bayesian setting, the logit of probability existing a change at a specified time
point, is decomposed additively to its lag and logarithm of likelihood ratio, which shows
the random walk structure of logit function.

3. In the non-Bayesian setting, the Snell auxiliary process is solved and represented by
recursive functions with a known structure.

4. Also, the Lustri method which gives an alternative method for derivation of Snell process
and then finding the location of change point becomes simple.

5. For all methods, the accuracies of proposed methods and corresponding limit theorems are
given. There are some similarities with other works in this filed:

6. Following Veeravalli and Banerjee [5], probabilities of changes are proposed, recursively,
which may be served as an early warning system to alarm the existence of possible future
changes. Although, their logits are decomposed additively and form a random walk process
with suitable properties to find the location of changes points.

7. The method of Lustri et al. [8] in optimal stopping field is developed to change point
detection.

8. Snell method is proposed in optimal stopping problems is proposed for change point
detection.
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