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Alagoas, Brasil

adonai@mat.ufal.br, isnaldo@pos.mat.ufal.br

Abstract. In this paper, we present new explicit and nonrecursive formulas for
the curvatures and the frame of Frenet of a regular curve with an arbitrary
parameter in the Euclidean space Rn, n > 2, expressed only in terms of its
derivatives.

Keywords – curve, Frenet apparatus, Frenet equations, curvatures.

MSC2020 – 15A69, 15A75, 53A04

Introduction

In his book, Elementary Differential Geometry ([10]), Barrett O’Neill, makes the
following remark:

... However, for explicit numerical computations — and
occasionally for the theory as well — this transference
is impractical, since it is rarely possible to find explicit
formulas for α. (For example, try to find a unit-speed
parametrization for the curve α(t) = (t, t2, t3).)

Such an observation concerns the explicit calculation of the Frenet apparatus of a curve
α, without using its arc length parametrization, that is, using an arbitrary parameter, as in
the cited example. One of our goals here is to generalize this calculation for curves in Rn.

Next, we use the material contained mainly in [8], [5], [6] and [12]. For this,
let f : I −→ Rn, n > 1, a parametrized (n − 1)-regular1 curve, that is, the derivatives
f ′(t), f ′′(t), . . . , f (n−1)(t) are linearly independent, for all t in the interval I . In this case,
looking carefully in the above references, we get (n − 1) real functions, defined in I ,
κ1(t), κ2(t), . . . , κn−1(t), κj > 0, j < n−1, and a positively oriented orthonormal frame
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1f is said to be k-regular if f ′(t), f ′′(t), . . . , f (k)(t) are linearly independent.
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field along f , Ft = {V1(t), V2(t), . . . , Vn(t)}, the Frenet frame of f . The functions κj ,
1 ≤ j ≤ n − 1, will be called of curvatures of f . When n = 3, the last curvature, κ2, is
called torsion and is indicate by τ . The set

Af (t) = {κ1(t), κ2(t), . . . , κn−1(t), V1(t), V2(t), . . . , Vn(t)}

is called Frenet apparatus of f . The elements of this set satisfy (1) below, known as Frenet
equations, in which ν(t) = ∥f ′(t)∥ denotes the speed of f and V1(t) =

f ′(t)
ν(t)

is the unit
tangent field. For simplicity, henceforth, we omit the parameter t.


V ′
1 = κ1ν V2

V ′
j = −κj−1ν Vj−1 + κjν Vj+1, 2 ≤ j ≤ n− 1

V ′
n = −κn−1ν Vn−1.

(1)

Furthermore, {V1, . . . , Vn−1} is the Gram-Schmidt orthonormal set constructed from the
derivatives f ′, f ′′,. . . ,f (n−1) (see the Theorem 1.1) and Vn = V1 × V2 × . . . × Vn−1.

Hence, for each j, 1 ≤ j ≤ n − 1, and t ∈ I , the space generated by {f ′, f ′′, . . . , f (j)}
coincides with that generated by {V1, . . . , Vj}. Note that this last fact can be rewritten by
using multivector (j-vector) objects, as

f ′ ∧ f ′′ ∧ · · · ∧ f (j) = λV1 ∧ · · · ∧ Vj,

where λ(t) ̸= 0, for all t ∈ I . In Theorem 2.1, we make explicit λ in terms of the
curvatures of f . When n = 3, we use the classic notation: κ1 = κ, κ2 = τ , V1 = T, the
unitary tangent vector, V2 = N, the principal normal vector, and V3 = B = T ×N, the
binormal vector. Thus, in this case, we have the classic Frenet equations:


T′ = κ νN

N′ = −κ νT+ τ νB

B′ = −τ νN.

,

f ′(t)T(t)
f(t)

N(t)

B(t)
T′(t)

or, in the matrix form, T′

N′

B′

 = ν

 0 κ 0

−κ 0 τ

0 −τ 0


T

N

B

 .
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Now, for n = 5, we get
V ′
1

V ′
2

V ′
3

V ′
4

V ′
5

 = ν


0 κ1 0 0 0

−κ1 0 κ2 0 0

0 −κ2 0 κ3 0

0 0 −κ3 0 κ4

0 0 0 −κ4 0




V1

V2

V3

V4

V5

 . (2)

1. Basic Facts on Wedge Product

Given the p-vectors v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp ∈
∧p(Rn), suppose that

(v1 v2 . . . vp) = (w1 w2 . . . wp)A,

for some p × p matrix A = (aij) (see Fact 3.5). This means that each vj is a linear
combination of the vectors w1, w2, . . . , wp. More precisely,

vj =

p∑
i=1

aijwi.

It is easy to see that
v1 ∧ · · · ∧ vp = (detA)w1 ∧ · · · ∧ wp. (3)

In particular, if A is a triangular matrix,

v1 ∧ · · · ∧ vp = a11a22 . . . app w1 ∧ · · · ∧ wp. (4)

Another well known fact is that

(v1 ∧ · · · ∧ vp) · (w1 ∧ · · · ∧ wp) = det(vi · wj), (5)

known as Gram determinant, defines an intern product in
∧p(Rn) and, thus, we have the

a well defined norm:
∥v1 ∧ · · · ∧ vp∥ =

√
det(vi · vj), (6)

which is also known as area of parallelogram generated by the vectors v1, v2, . . . , vp. It is
convenient to remark that the (p×p) matrix (vi ·vj) equals T(v1 v2 . . . vp)(v1 v2 . . . vp),
where TM denotes the transpose of M and (v1 v2 . . . vp) is the (n × p) matrix whose
columns are the column vectors v1, . . . , vp. Thus, when p = n, we get a useful identity,
namely

∥v1 ∧ · · · ∧ vn∥ = | det(v1 v2 . . . vn)|.
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In fact,
det(T(v1 v2 . . . vn)(v1 v2 . . . vn)) = det(vi · vj).

Now, we consider a (n− 1)-vector in
∧n−1(Rn), say w = w1 ∧ · · · ∧ wn−1. In this case,

we also have the cross product w̃ = w1 × · · · × wn−1, which belongs to Rn and, for all
X ∈ Rn,

w̃ ·X = det(w1, . . . , wn−1, X)

holds. This implies the

{w1, . . . , wn−1, w1 × · · · × wn−1}

is a positively oriented basis, whenever {w1, . . . , wn−1} is linearly independent. In fact,
w̃ ̸= 0 and

0 < w̃ · w̃ = det(w1, . . . , wn−1, w1 × · · · × wn−1).

Of course we cannot compare w with w̃, however two (n−1)-vectors are equal if,
and only if, the corresponding cross products are equal. This comes from the fact that the
coordinates of v1 ∧ · · · ∧ vn−1, in the canonical basis of

∧n−1(Rn), coincide, up to signal,
with those of the v1 × · · · × vn−1. Indeed,

v1 × · · · × vn−1 = ∗(v1 ∧ · · · ∧ vn−1),

where ∗ is the Hodge star operator.

Now, for each m ∈ Z, 2 ≤ m ≤ n, we introduce a very useful operator,
denoted by Φm, which we will call m-Gram-Schmidt operator. This operator is a bi-
linear operator that acts on the product

∧m−1(Rn) ×
∧m(Rn). Initially, we define

ϕ : (Rn)m−1 × (Rn)m −→ Rn by the vector determinant

ϕ(v1, . . . , vm−1, w1, . . . , wm) = det



v1 · w1 . . . v1 · wm−1 v1 · wm

v2 · w1 . . . v2 · wm−1 v2 · wm

...
. . .

...
...

vm−1 · w1 . . . vm−1 · wm−1 vm−1 · wm

w1 . . . wm−1 wm


which is well defined because the vectors w1, w2, . . . , wm occur only in one row, the last.
We have that ϕ is a multilinear map. Furthermore, ϕ is a skew-symmetric map on each
factor, (Rn)m−1 and (Rn)m, separately. Hence, ϕ induces a bilinear map

Φm :
∧m−1(Rn)×

∧m(Rn) −→ Rn
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given by

Φm(v1 ∧ · · · ∧ vm−1, w1 ∧ · · · ∧ wm) = ϕ(v1, . . . , vm−1, w1, . . . , wm),

the m-Gram-Schmidt operator (see [11]). Such a family of operators has very nice prop-
erties, which we list bellow.

THEOREM 1.1

(1) The vector Φm(v1∧· · ·∧vm−1, w1∧· · ·∧wm) is a linear combination of w1, . . . , wm

with the coefficient of wm equal to the inner product

(v1 ∧ · · · ∧ vm−1) · (w1 ∧ · · · ∧ wm−1).

(2) Given X ∈ Rn, the inner product

Φm(v1 ∧ · · · ∧ vm−1, w1 ∧ · · · ∧ wm) ·X

equals

det



v1 · w1 . . . v1 · wm−1 v1 · wm

v2 · w1 . . . v2 · wm−1 v2 · wm

...
. . .

...
...

vm−1 · w1 . . . vm−1 · wm−1 vm−1 · wm

w1 ·X . . . wm−1 ·X wm ·X


.

(3) The vector Φm(v1 ∧ · · · ∧ vm−1, w1 ∧ · · · ∧ wm) is perpendicular to the vectors
v1, . . . , vm−1.

(4) Given m, 2 < m ≤ n, Φm(v1 ∧ · · · ∧ vm−1, v1 ∧ · · · ∧ vm) is perpendicular to the
vectors

Φj(v1 ∧ · · · ∧ vj−1, v1 ∧ · · · ∧ vj),

for 2 ≤ j < m.

(5) The set
{v1,Φj(v1 ∧ · · · ∧ vj−1, v1 ∧ · · · ∧ vj); 2 ≤ j ≤ m}

is orthogonal.

(6) Given m, 2 ≤ m ≤ n,

∥Φm(v1 ∧ · · · ∧ vm−1, v1 ∧ · · · ∧ vm)∥ = ∥v1 ∧ · · · ∧ vm−1∥ ∥v1 ∧ · · · ∧ vm∥ .
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(7) Given 1 < j ≤ m ≤ n, define Wj = Φj(v1∧· · ·∧vj−1, v1∧· · ·∧vj) and W1 = v1.
If {v1, . . . , vm} is linearly independent, then

{Vj =
Wj

∥Wj∥
; 1 ≤ j ≤ m}

is an orthonormal set of vectors, which is an orthonormal basis of Rn, in the case
m = n. Furthermore, W1 ∧ · · · ∧Wj equals(

∥v1∥2 ∥v1 ∧ v2∥2 · · · ∥v1 ∧ · · · ∧ vj−1∥2
)
v1 ∧ · · · ∧ vj

and
V1 ∧ · · · ∧ Vj =

v1 ∧ · · · ∧ vj
∥v1 ∧ · · · ∧ vj∥

.

Whence, if m = n, we get that the bases {vj; 1 ≤ j ≤ n}, {Wj; 1 ≤ j ≤ n} and
{Vj; 1 ≤ j ≤ n} have the same orientation.

(8) Suppose that {U1, . . . , Um} is an orthonormal set of vectors. Then, for each 1 <

j ≤ m,
Φj(U1 ∧ · · · ∧ Uj−1, U1 ∧ · · · ∧ Uj) = Uj.

(9) If {e1, . . . , en} is the canonical basis of Rn, then

Φn(v1 ∧ · · · ∧ vn−1, e1 ∧ · · · ∧ en) = v1 × · · · × vn−1.

The set of orthonormal vectors {Vj, 1 ≤ j ≤ m} in (7) is the Gram-Schmidt
orthonormal set constructed from {vj, 1 ≤ j ≤ m}. When m = n, we have the Gram-
Schmidt orthonormal basis constructed from the basis {vj, 1 ≤ j ≤ n}. The following
Corollary gives us a nonrecursive formula for each element of the Gram-Schmidt set,
which follows easily from (6) above.

COROLLARY 1.2 If {vj, 1 ≤ j ≤ m} ⊂ Rn is linearly independent, then the elements
of the Gram-Schmidt orthonormal set {Vj, 1 ≤ j ≤ m} are given by V1 = v1

∥v1∥ and, for
2 ≤ j ≤ m,

Vj =

det



v1 · v1 . . . v1 · vj−1 v1 · vj
v2 · v1 . . . v2 · vj−1 v2 · vj

... . . . ...
...

vj−1 · v1 . . . vj−1 · vj−1 vj−1 · vj
v1 . . . vj−1 vj


∥v1 ∧ · · · ∧ vj−1∥ ∥v1 ∧ · · · ∧ vj∥

.
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2. The Main Results

Fixed t ∈ I and given X ∈ Rn, 1 ≤ j ≤ n, and we indicate by [X]j the j th

coordinate of X in the Frenet frame

F(t) = {V1(t), V2(t), . . . , Vn(t)},

that is
X = [X]1 V1 + [X]2 V2 + [X]3 V3 + · · ·+ [X]n Vn.

Using the above notation, we have the following result.

THEOREM 2.1 Let f : I −→ Rn be a (n − 1)-regular parametrized curve in Rn with
speed ν = ∥f ′∥ and Frenet apparatus

A = {κ1, κ2, . . . , κn−1, V1, V2, . . . , Vn}.

Then

(1) [f ′]1 = ν, [f (m)]m = κ1 . . . κm−1ν
m, 2 ≤ m ≤ n;

(2)
f ′ = ν V1

and
f ′ ∧ · · · ∧ f (m) = ν

m(m+1)
2 κm−1

1 · · · κm−1 V1 ∧ · · · ∧ Vm,

for 2 ≤ m ≤ n.

Proof. We proceed by induction on m. We have

[f ′]1 = f ′ · V1 = ν V1 · V1 = ν.

Since f (m−1) belongs to the space generated by {V1, . . . , Vm−1}, we have that f (m−1) ·
Vm = 0, and thus

[f (m)]m = f (m) · Vm = −f (m−1) · V ′
m

= −κ1 κ2 . . . κm−2ν
m−1 Vm−1 · (−κm−1ν Vm−1)

= κ1 κ2 . . . κm−1ν
m,
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which proofs (i). Now, using [f (m)]l = 0, for l > m,

f ′ ∧ · · · ∧ f (m) = (f ′ ∧ · · · ∧ f (m−1)) ∧ f (m)

= (ν(1+2+···(m−1)) κm−2
1 κm−3

2 · · · κm−2 V1 ∧ · · · ∧ Vm−1) ∧ ([f (m)]m Vm)

= ν(1+2+···+m) κm−1
1 κm−2

2 . . . κm−1 V1 ∧ · · · ∧ Vm,

where, in the last step, we use (i). □

The following corollary establishes a recursive algorithm to calculate all curva-
tures of f , using only its derivatives.

COROLLARY 2.2
κ1 =

∥f ′ ∧ f ′′∥
ν3

,

κm =

∥∥f ′ ∧ · · · ∧ f (m+1)
∥∥

νm+1 κ1 . . . κm−1 ∥f ′ ∧ · · · ∧ f (m)∥
, (7)

2 ≤ m ≤ n− 2, and, the last curvature, which has a sign, is

κn−1 =
(f ′ × · · · × f (n−1)) · f (n)

νn κ1 . . . κn−2 ∥f ′ ∧ · · · ∧ f (n−1)∥
. (8)

Furthermore,

Vn =
f ′ × · · · × f (n−1)

∥f ′ ∧ · · · ∧ f (n−1)∥
. (9)

Proof. Taking the norm in Theorem 2.1-(ii), and noting that V1 ∧ · · · ∧ Vm and
V1 ∧ · · · ∧ Vm−1 are unit vectors, produces∥∥f ′ ∧ · · · ∧ f (m+1)

∥∥ = ν
(m+1)(m+2)

2 κm
1 κm−1

2 · · · κ2
m−1 κm

and ∥∥f ′ ∧ · · · ∧ f (m)
∥∥ = ν

m(m+1)
2 κm−1

1 κm−2
2 · · · κm−1.

Dividing these equations, we get (2.2). These arguments show that (2.2) also applies to
m = n− 1, but in this way we lost the signal of κn−1, that is, we only obtain |κn−1|. For
this reason, we rewrite Theorem 2.1-(ii) using the cross product:

f ′ × · · · × f (n−1) = ν
n(n−1)

2 κn−2
1 κn−3

2 · · · κn−2 Vn,
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for Vn = V1 × · · · × Vn−1. Since κj > 0, 1 ≤ j ≤ n − 2, this last equation implies (9)
and

(f ′ × · · · × f (n−1)) · f (n) = (ν
n(n−1)

2 κn−2
1 κn−3

2 . . . κn−2 Vn) · ([f ]n Vn)

= ν
n(n+1)

2 κn−1
1 κn−2

2 . . . κn−1

= νn κ1 κ2 . . . κn−2

∥∥f ′ ∧ f ′′ ∧ · · · ∧ f (n−1)
∥∥ κn−1,

which implies (8). □

The next corollaries certainly gives us the more efficient way to get the apparatus
of Frenet of f in terms of the derivatives only, in a non-recursive form. Before, we will
do a cancellation lemma.

LEMMA 2.3 Let p : N −→ R be a positive function with p(0) = 1 and p(1) = c. Now
define q(n) = p(n−1)p(n+1)

c p2(n)
. Then q(n) equals

1

cn+1q(1)q(2) · · · q(n− 1)

p(n+ 1)

p(n)
.

Proof. Using the definition of q, it easy to check that the factors in
q(1)q(2) · · · q(n−1) cancel nicely resulting p(n)

cnp(n−1)
. (Here the reader could use induction

on n, observing that q(1) = p(2)/c3.) Hence

1

cn+1q(1) · · · q(n− 1)

p(n+ 1)

p(n)
=

1

cn+1

cnp(n− 1)

p(n)

p(n+ 1)

p(n)
,

and the proof is complete. □

COROLLARY 2.4 Given 2 ≤ m ≤ n− 2,

κm =

∥∥f ′ ∧ · · · ∧ f (m−1)
∥∥∥∥f ′ ∧ f ′′ ∧ · · · ∧ f (m+1)

∥∥
ν
∥∥f ′ ∧ · · · ∧ f (m)

∥∥2 (10)

and

κn−1 =

∥∥f ′ ∧ · · · ∧ f (n−2)
∥∥ ((f ′ × · · · × f (n−1)) · f (n))

ν
∥∥f ′ ∧ · · · ∧ f (n−1)

∥∥2 . (11)
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Furthermore, whenever 2 ≤ m ≤ n− 1,

Vm =

det



f ′ · f ′ . . . f ′ · f (m−1) f ′ · f (m)

f ′′ · f ′ . . . f ′′ · f (m−1) f ′′ · f (m)

...
. . .

...
...

f (m−1) · f ′ . . . f (m−1) · f (m−1) f (m−1) · f (m)

f ′ . . . f (m−1) f (m)


∥∥f ′ ∧ · · · ∧ f (m−1)

∥∥∥∥f ′ ∧ · · · ∧ f (m)
∥∥ . (12)

Proof. Just set p(0) = 1, p(j) =
∥∥f ′ ∧ · · · ∧ f (j)

∥∥, for j > 0, and use Lemma 2.3
together with Corollary 2.2. The result in (12) follows from the Corollary 1.2, with
vj = f (j), 1 ≤ j ≤ m. □

The following corollary, that results easily from the previous results, establishes
an algorithm that calculates, using only the derivatives, part of the Frenet apparatus (up to
κ4 and V3) of f , for any n.

COROLLARY 2.5

(i) V1 =
f ′

ν
;

(ii) κ1 =
∥f ′∧f ′′∥

ν3
;

(iii) V2 = −
(

f ′·f ′′

ν∥f ′∧f ′′∥

)
f ′ + ν

∥f ′∧f ′′∥f
′′;

(iv) κ2 =
∥f ′∧f ′′∧f ′′′∥
∥f ′∧f ′′∥2 ;

(v) k3 =
∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∧f ′′′′∥

ν∥f ′∧f ′′∧f ′′′∥2 ;

(vi) k4 =
∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∧f ′′′′∧f ′′′′′∥

ν∥f ′∧f ′′∧f ′′′∧f ′′′′∥2 or, if n = 5, k4 =
∥f ′∧f ′′∧f ′′′∥ (f ′×f ′′×f ′′′×f ′′′′)·f ′′′′′

ν∥f ′∧f ′′∧f ′′′∧f ′′′′∥2 ;

(vii) V3 =
(f ′′′·f ′′)(f ′·f ′′)−(f ′′′·f ′)∥f ′′∥2

∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∥ f ′+ (f ′′′·f ′)(f ′·f ′′)−(f ′′′·f ′′)ν2

∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∥ f ′′+ ∥f ′∥2 ∥f ′′∥2−(f ′·f ′′)2

∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∥f
′′′.

COROLLARY 2.6 If ν = 1, that is, t is the arc length parameter, then

(i) V1 = f ′;

(ii) κ1 = ∥f ′′∥;

(iii) V2 =
f ′′

∥f ′′∥ ;

(iv) κ2 =
∥f ′∧f ′′∧f ′′′∥

∥f ′′∥2 ;
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(v) k3 =
∥f ′′∥ ∥f ′∧f ′′∧f ′′′∧f ′′′′∥

∥f ′∧f ′′∧f ′′′∥2 ;

(vi) k4 =
∥f ′∧f ′′∥ ∥f ′∧f ′′∧f ′′′∧f ′′′′∧f ′′′′′∥

∥f ′∧f ′′∧f ′′′∧f ′′′′∥2 or, if n = 5, k4 =
∥f ′∧f ′′∧f ′′′∥ (f ′×f ′′×f ′′′×f ′′′′)·f ′′′′′

∥f ′∧f ′′∧f ′′′∧f ′′′′∥2 ;

(vii) V3 =
∥f ′′∥3

∥f ′∧f ′′∧f ′′′∥f
′ − f ′′·f ′′′

∥f ′∧f ′′∧f ′′′∥∥f ′′∥f
′′ + ∥f ′′∥

∥f ′∧f ′′∧f ′′′∥f
′′′′.

In particular, for n = 5, we get more attractive formulas for the results of [14].

Proof. It follows immediately from the anterior corollary by using
∥f ′ ∧ f ′′∥ = ∥f ′′∥, which is true, since f ′ and f ′′ are orthogonal vectors. □

COROLLARY 2.7 ([10]–4.3 Theorem) Given a 2-regular curve f : I −→ R3, then

(i) T = V1 =
f ′

ν
;

(ii) κ = κ1 =
∥f ′∧f ′′∥

ν3
;

(iii) τ = κ2 =
(f ′∧f ′′)·f ′′′

∥f ′∧f ′′∥2 ;

(iv) B = V3 =
f ′×f ′′

∥f ′×f ′′∥ ;

(v) N = V2 = B×T.

Proof. The proof is very simple. We just observe that (v) follows from the positive
orientation of the Frenet frame {T,N,B}. □

EXAMPLE 2.8 Consider f(t) = (t, t2, t3, t4), t ∈ R. A direct computation givens the
matrix of the derivatives of f :

(f ′ f ′′ f ′′′ f ′′′′) =


1 0 0 0

2t 2 0 0

3t2 6t 6 0

4t3 12t2 24t 24


whose determinant is 288. Hence f is 4-regular. The basic objects for the computation of
the Frenet apparatus will be obtained below.

ν = ∥f ′∥ =
√
1 + 4t2 + 9t4 + 16t6;[1]

ν ′ =
2t(2+9t2+24t4)√
1+4t2+9t4+16t6

;[2]
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∥f ′ ∧ f ′′∥2 = det

f ′ · f ′ f ′ · f ′′

f ′′ · f ′ f ′′ · f ′′

 == det

1 + 4t2 + 9t4 + 16t6 2t
(
2 + 9t2 + 24t4

)
2t
(
2 + 9t2 + 24t4

)
4
(
1 + 9t2 + 36t4

)


= 4(1 + 9t2 + 45t4 + 64t6 + 36t8);

[3]

f ′ × f ′′ × f ′′′ = (−48t3, 72t2,−48t, 12);[4]

(f ′ × f ′′ × f ′′′) · f ′′′′ = 12 · 24 = 288;[5]

∥f ′ ∧ f ′′ ∧ f ′′′∥2 = 144(1 + 16t2 + 36t4 + 16t6);[6]

Now, the Frenet apparatus:

κ1 =
∥f ′∧f ′′∥

ν3
= 2

√
1+9t2+45t4+64t6+36t8

(1+4t2+9t4+16t6)3/2
;[1]

κ2 =
∥f ′∧f ′′∧f ′′′∥
∥f ′∧f ′′∥2 = 3

√
1+16t2+36t4+16t6

1+9t2+45t4+64t6+36t8
;[2]

κ3 =
∥f ′∧f ′′∥(f ′∧f ′′∧f ′′′)·f ′′′′

ν∥f ′∧f ′′∧f ′′′∥2 = 4
√
1+9t2+45t4+64t6+36t8√

1+4t2+9t4+16t6(1+16t2+36t4+16t6)
;[3]

V1 =
f ′

ν
= 1√

1+4t2+9t4+16t6
(1, 2t, 3t2, 4t3);[4]

V2 = −
(

f ′·f ′′

ν∥f ′∧f ′′∥

)
f ′ + ν

∥f ′∧f ′′∥f
′′ =



−t (2 + 9t2 + 24t4)

1− 9t4 − 32t6

3t+ 6t3 − 24t7

2t2 (3 + 8t2 + 9t4)


√
1+4t2+9t4+16t6

√
1+9t2+45t4+64t6+36t8

;[5]

V4 =
f ′×f ′′×f ′′′

∥f ′×f ′′×f ′′′∥ =



1 0 0 e1

2t 2 0 e2

3t2 6t 6 e3

4t3 12t2 24t e4


12

√
1+16t2+36t4+16t6

=



−4t3

6t2

−4t

1


√
1+16t2+36t4+16t6

.[6]

It remains to calculate V3. For this, we use the positive orientation of the Frenet frame
{V1, V2, V3, V4}. We have,

V3 = −V1 × V2 × V4,

since det(V1, V2, V4, V3) = − det(V1, V2, V3, V4) = −1. We omit the explicit result. In
particular, the Frenet apparatus at t = 0 is given by

A(0) = {2, 3, 4, (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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3. On the Fundamental Theorem for Curves

In [6], [12] and [8], we found the following theorem, known as Fundamental The-
orem of the Local Theory of Curves. Its statement could be posed in this way:

Theorem. Let ki(s), i = 1, . . . n−1, s ∈ I , be smooth func-
tions with ki(s) > 0, i = 1, . . . n− 2 . For a fixed parameter
s0 ∈ I , suppose we have been given a point q0 ∈ Rn as well
as an n frame e1(0), . . . , en(0). Then there is a unique curve
c : I −→ Rn parametrized by arc length and satisfying the
following three conditions:

1. c(s0) = q0,

2. e1(0), . . . , en(0) is the Frenet frame of c at q0,

3. ki(s), i = 1, . . . n− 1, are the curvatures of c.

A similar theorem appears in [2], on three-dimensional case. The proofs, in both cases,
use the general existence and uniqueness theorem for systems of linear differential equa-
tions. In that follows, we extend, the cited theorem to arbitrary speed curves in Rn. A
complete proof is presented here. The theorem is as follows.

THEOREM 3.1 Let ν(t) and kj(t), j ∈ {1, 2, . . . n− 1}, t ∈ I , be smooth functions such
that, for all t ∈ I , ν(t) > 0 and kj(t) > 0, j ≤ n−2. Then there exists f : I −→ Rn with
speed ν(t) and curvatures kj(t), j ∈ {1, 2, . . . n − 1}. Furthermore, if g : I −→ Rn is
another curve satisfying these conditions, there exists an orientation preserving isometry
F : Rn −→ Rn such that g = F ◦ f , that is, f and g are congruent curves.

Before the proof of this theorem, we obtain some preliminary results. Initially,
since we are going to work with two curves f and g, we will make a suitable adjustment
in the notation: we will put a tilde over each object associated to the curve g. For example,
ν̃ and κ̃1 indicate the speed and the first curvature of g whereas Ṽ1 indicates the first vector
field of the Frenet frame of g. Thus, given the curves f and g, both defined in I , we have
the Frenet apparatus:

Af = {κ1, κ2, . . . , κn−1, V1, V2, . . . , Vn}

and
Ag = { κ̃1, κ̃2, . . . , κ̃n−1, Ṽ1, Ṽ2, . . . , Ṽn}.
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Now, consider f : I −→ Rn a parameterized curve in Rn and let F : Rn −→ Rn be an
orientation preserving isometry, that is, F (X) = SX + X0, where S is a orthogonal
matrix of determinant 1. Using F , we construct a new curve, namely, g = F ◦ f , or
g(t) = F (f(t)), t ∈ I . The next result establishes that in a certain way g inherits the
Frenet apparatus of f .

PROPOSITION 3.2 The speed of g equals speed of f and the Frenet apparatus of g = F ◦f
is given by

Ag = {κ1, κ2, . . . , κn−1, S V1, S V2, . . . , S Vn}

In other words, κ̃j = κj , 1 ≤ j ≤ n− 1, and Ṽj = S Vj , 1 ≤ j ≤ n.

Proof. Using the chain rule, we get g′(t) = dFf(t)(f
′(t)) = Sf ′(t), Hence ν̃2 =

(Sf ′) · (Sf ′) = ν2, because S preserves the inner product, which proof the claim on
the speeds. Firstly, we study the curvatures. Using Corollary 2.4 together the norm of a
multivector given in (6), we see that given v1, . . . , vj ∈ Rn, the following holds

∥Sv1 ∧ · · · ∧ Svj∥ =
√

det((Svi) · (Svj))

=
√

det(vi · vj) = ∥v1 ∧ · · · ∧ vj∥ ,

again because S preserves the inner product. Thus, for 1 ≤ m ≤ n− 2,

κ̃m =

∥∥g′ ∧ · · · ∧ g(m−1)
∥∥ ∥∥g′ ∧ · · · ∧ g(m+1)

∥∥
ν̃ ∥g′ ∧ · · · ∧ g(m)∥2

=

∥∥Sf ′ ∧ · · · ∧ Sf (m−1)
∥∥ ∥∥Sf ′ ∧ · · · ∧ Sf (m+1)

∥∥
ν ∥Sf ′ ∧ · · · ∧ Sf (m)∥2

=

∥∥f ′ ∧ · · · ∧ f (m−1)
∥∥ ∥∥f ′ ∧ · · · ∧ f (m+1)

∥∥
ν ∥f ′ ∧ · · · ∧ f (m)∥2

= κm,

since g(j) = Sf (j), for all j, by the chain rule. It remains to see the claim about the Frenet
frames and the last curvature. From the definitions, we get

Ṽ1 =
g′

ν̃
=

S f ′

ν
= S

f ′

ν
= S V1.

By induction, assuming that Ṽj = S Vj , 1 ≤ j ≤ n− 1, we show that Ṽj+1 = S Vj+1. In
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fact, first

Ṽ ′
j = (S Vj)

′ = S(−ν κj−1 Vj−1 + ν κj Vj+1)

= −ν κj−1Ṽj−1 + ν κjS Vj+1.

On the other hand,

Ṽ ′
j = − ν̃ κ̃j−1Ṽj−1 + ν̃ κ̃jṼj+1 = −ν κj−1Ṽj−1 + ν κjṼj+1.

Hence ν κjS Vj+1 = ν κjṼj+1 and thus Ṽj+1 = S Vj+1. Note that the preceding ar-
guments could be used for the curvatures. We will make it so for κ̃n−1. Since that
{V1, V2, . . . , Vn} is a positively oriented frame and detS = 1, it is not hard to see that

S Vn = S(V1 × · · · × Vn−1) = S V1 × · · · × S Vn−1

= Ṽ1 × · · · × Ṽn−1 = Ṽn.

Indeed, it is sufficient to note that S(V1 × · · · × Vn−1) · Ṽj = 0, for all 1 ≤ j ≤ n − 1.
Differentiating Ṽn = S Vn yields ν̃ κ̃n−1Ṽn−1 = ν κn−1S Vn−1, from which it follows
that κ̃n−1 = κn−1 and the proof is complete. □

REMARK 3.3 The proof above shows that if F is an orientation reversing isometry, then
all works well, except that Ṽn = −S Vn and κ̃n−1 = −κn−1.

The converse of the proposition above is true. Its statement is as follows. In it f
is as before, having speed ν and Frenet apparatus

Af = {κ1, κ2, . . . , κn−1, V1, V2, . . . , Vn}.

We note here that such a result appears in [8] (Theorem 4.11) and its proof he uses another
argument.

PROPOSITION 3.4 Let h : I −→ Rn be a parametrized curve with speed ν and Frenet
apparatus

Ah = {κ1, κ2, . . . , κn−1, V 1, V 2, . . . , V n}.

If ν = ν and κj = κj , 1 ≤ j ≤ n − 1, then there exists a unique preserving orientation
isometry F of Rn such that h = F ◦ f .

Proof. For simplicity, suppose that 0 ∈ I and h(0) = f(0) = (0, 0, . . . , 0). Now,
let S be the orthogonal transformation that sends the Frenet frame Ff (0) to the Frenet
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frame Fh(0), that is, S Vj(0) = V j(0), j = 1, 2, . . . n. Of course that detS = 1, for these
frames are positively oriented. In that follows, we use the ideas of O’Neill [10], in his
proof for n = 3. Consider g = S ◦ f and the real function

r(t) =
n∑

j=1

Ṽj(t) · V j(t), t ∈ I,

where, as before, Fg = {Ṽj(t) = S Vj(t), 1 ≤ j ≤ n} is the Frenet frame field of
g. Of course that g(0) = h(0), Fg(0) = Fh(0), ν̃ = ν = ν and κj = κ̃j = κj , for
1 ≤ j ≤ n − 1. The main idea now is to show that g matches h. We start observing that
r(0) = n, since Fg(0) = Fh(0). We have that

r′ =
n∑

j=1

(Ṽ ′
j · V j + Ṽj · V

′
j).

Claim: r′ = 0. In fact, firstly, the first and second summands of r′ are

Ṽ ′
1 · V 1 + Ṽ1 · V

′
1 = ν κ1Ṽ2 · V 1 + ν κ1Ṽ1 · V 2

and

Ṽ ′
2 · V 2 + Ṽ2 · V

′
2 = −ν κ1Ṽ2 · V 1 − ν κ1Ṽ1 · V 2 + ν κ2Ṽ3 · V 2 + ν κ2Ṽ2 · V 3.

Hence
2∑

j=1

(Ṽ ′
j · V j + Ṽj · V

′
j) = ν κ2Ṽ3 · V 2 + ν κ2Ṽ2 · V 3.

By induction on m, m ≤ n− 1, we get

m∑
j=1

(Ṽ ′
j · V j + Ṽj · V

′
j) = ν κmṼm+1 · V m + ν κmṼm · V m+1.

Thus

r′ = ν κn−1Ṽn · V n−1 + ν κn−1Ṽn−1 · V n + (Ṽ ′
n · V n + Ṽn · V

′
n)

= ν κn−1Ṽn · V n−1 + ν κn−1Ṽn−1 · V n − ν κn−1Ṽn · V n−1 − ν κn−1Ṽn−1 · V n = 0

which proofs the claim. So r is a constant function. From r(0) = n we get r(t) = n,
t ∈ I . Since each summand of r is at most 1, we get that all of them are equal to 1. In
particular, Ṽ1 = V 1 which implies that g′ = h′ and, by integration on [0, t], g = h, that is,
h = S◦f . The general case is obtained by considering h(t)−h(0) and f(t)−f(0) instead
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of h and f , respectively. From this we conclude that S(f(t) − f(0)) = h(t) − h(0).
Hence g = F ◦ h, where F (X) = SX +X0, X0 = h(0) − S(f(0)). The uniqueness of
F follows as in the reference [8]. □

We are almost ready for proving the fundamental theorem (Theorem 3.1). Before,
let us summarize some facts on vector matrices.

FACT 3.5 Given the vectors V1, . . . , Vm in Rn, we indicate by

V =


V1

V2

...

Vm

 = T(V1 V2 . . . Vm),

where TM indicates the transpose of M , the n × 1 vector matrix with elements Vj . V is
called a (m × 1)-vector matrix. Note that by stacking all coordinates of the vectors Vj

(viewed as column vectors), we obtain an (mn)× 1 real matrix or an mn-column vector.

Given a p× q real matrix A and a (q× 1)-vector matrix V = T(V1 V2 . . . Vq), the
product W = AV is defined to be the (q × 1)-vector column matrix

W = T(W1 W2 . . . Wq)

such that

Wi =
m∑
j=1

aijVj, aij ∈ R,

or 
W1

W2

...

Wp

 =


a11 a12 . . . a1q

a21 a22 . . . a2q
...

... . . . ...

ap1 ap2 . . . apq




V1

V2

...

Vq

 .

Of course, if V = (V1 V2 . . . Vp) is a (1 × p)-vector matrix, the product V A is a well
defined (1 × q)-vector matrix. The following properties hold true. In them, a ∈ R, C
is a r × p real matrix, A and B are p × q real matrices and V and W are (q × 1)-vector
matrices.

(i) A (aV ) = (aA)V = a(AV );

(ii) (A+B)V = AV +B V ;
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(iii) A(V +W ) = AV + AW ;

(iv) (CA)V = C(AV ).

Now, consider a linear system of the type AV = W , where A, V and W are as
above. From this, an interesting exercise arrives: find a usual linear system equivalent to
it. It is easy. Just stack the coordinates of the elements of the matrices V and W , obtaining
Ṽ and W̃ in Rqn and replace A by Ã, of order pn×qn, where ãij is the block ãij = aijIdn

and Idn is the n × n identity matrix. In the Table 1 below, we see an example for p = 2,
q = 3 and n = 4, where Vi = (Vi1, Vi2, Vi3, Vi4) ∈ R4.

Another useful product of vector matrices is what uses the inner product in its
construction. We will deal only with vector matrices of order either n × 1 or 1 × n. For
this, let V = T(V1 V2 . . . Vn) and W = (W1 W2 . . . Wn). The dot product of V by W

is the n× n real matrix

V ·W =


V1

V2

...

Vn

 · (W1 . . . Wn) =


V1 ·W1 . . . V1 ·Wn

V2 ·W1 . . . V2 ·Wn

...
. . .

...

Vn ·W1 . . . Vn ·Wn

 .

REMARK 3.6 With this new notation, the inner product in (5) becomes

(v1 ∧ · · · ∧ vn) · (w1 ∧ · · · ∧ wn) = det(v · w).

Given a n×n real matrix A, a (n×1)-vector matrix V and a (1×n)-vector matrix
W , the following hold:

A (V ·W ) = (AV ) ·W ;(i)

(V ·W )A = V · (WA).(ii)

Of course, we have distributive properties for appropriate choices of the vector matrices.
Moreover, if V and W depend differentiably on t ∈ I , then

(V ·W )′ = V ′ ·W + V ·W ′.

Finally, using the facts above, we will prove Theorem 3.1. The proof involves
four steps, namely:
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Table 1. Expanding a vector linear system to an usual linear system

(
a11 a12 a13
a21 a22 a23

) V1

V2

V3

 =



a11


V11

V12

V13

V14

+ a12


V21

V22

V23

V24

+ a13


V31

V32

V33

V34


a21


V11

V12

V13

V14

+ a22


V21

V22

V23

V24

+ a23


V31

V32

V33

V34





=



a11


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a12


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a13


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


a21


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a22


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a23


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







V11

V12

V13

V14

V21

V22

V23

V24

V31

V32

V33

V34



=



a11 0 0 0 a12 0 0 0 a13 0 0 0
0 a11 0 0 0 a12 0 0 0 a13 0 0
0 0 a11 0 0 0 a12 0 0 0 a13 0
0 0 0 a11 0 0 0 a12 0 0 0 a13

a21 0 0 0 a22 0 0 0 a23 0 0 0
0 a21 0 0 0 a22 0 0 0 a23 0 0
0 0 a21 0 0 0 a22 0 0 0 a23 0
0 0 0 a21 0 0 0 a22 0 0 0 a23





V11

V12

V13

V14

V21

V22

V23

V24

V31

V32

V33

V34



=



W11

W12

W13

W14

W21

W22

W23

W24

W31

W32

W33

W34



From the given functions ν and κj , 1 ≤ j ≤ n − 1, we construct, based on the
Frenet equations, a system of n2 first order linear differential equations, which we
refer as (FS).

(Step 1)

We apply the general existence and uniqueness theorem for systems of linear dif-
ferential equations to (FS) and take the solution that satisfies a certain initial
condition. Such a solution is an n-vector column matrix V = T(V1 V2 . . . Vn)

that depends on t.

(Step 2)

The existence assertion of the theorem: we verify that {V1(t), V2(t), . . . , Vn(t)}
is actually a orthonormal frame field and, from the vector function V1(t), we con-
struct a curve f with speed ν, curvatures κj , 1 ≤ j ≤ n − 1, and Frenet frame
field Ff = {V1, V2, . . . , Vn}.

(Step 3)

The uniqueness assertion of the theorem: given a curve g with speed ν and curva-
tures κj , 1 ≤ j ≤ n− 1, there exists an isometry of Rn such that g = F ◦ f . This
step we have already seen in the Proposition 3.4.

(Step 4)
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We start writing the Frenet equations (1) of a given f in a matrix form (see (2), for n = 5).
They become



V ′
1

V ′
2

V ′
3

V ′
4

...
V ′
n−2

V ′
n−1

V ′
n



=



0 ν κ1 0 0 . . . 0 0

−ν κ1 0 ν κ2 0 . . . 0 0

0 −ν κ2 0 ν κ3 . . . 0 0

0 0 −ν κ3 0 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 . . . 0 ν κn−2 0

0 0 0 . . . −ν κn−2 0 ν κn−1

0 0 0 . . . 0 −ν κn−1 0





V1

V2

V3

V4

...
Vn−2

Vn−1

Vn



,

or simply
V ′ = MV, (FS)

where V1 = f ′

ν
, V = T(V1 V2 . . . Vn) and V ′ = T(V ′

1 V ′
2 . . . V ′

n) are n-vector column
matrices constructed from the Frenet frame of f , and M, called the Frenet matrix of f , is
the n× n skew symmetric matrix such that

Mij = V ′
i · Vj =


−ν κi−1, j = i− 1

ν κi, j = i+ 1

0, j ̸∈ {i− i, i+ 1}.
,

for V ′
i = −ν κi−1 Vi−1 + ν κi Vi+1. Of course even without knowing f , we can con-

sider (FS) on the interval I ∋ 0, because we can construct M. Hence, we get a first
order system of differential equations for the unknown vector functions V1, V2, . . . , Vn,
which, according to the Fact 3.5, can be viewed as a usual system of n2 first order linear
differential equations. Thus we can apply the general existence and uniqueness theo-
rem for systems of linear differential equations to it and achieve a unique set of func-
tions {V1(t), V2(t), . . . , Vn(t)} that satisfies (FS) and the initial conditions Vj(0) = ej ,
1 ≤ j ≤ n, where {e1, . . . , en} is the canonical basis of Rn. In this way, we go through
the steps 1 and 2.

For the step 3, we consider the n× n matrix function A(t) = (Vi(t) · Vj(t)), or

A(t) =


V1(t)

V2(t)
...

Vn(t)

 · (V1(t) V2(t) . . . Vn(t)) = V (t) · TV (t).
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It is convenient to remark that A(0) = Idn, where Idn is the n × n identity matrix.
Differentiating A, we get

A′ = V ′ · TV + V · TV ′ = (MV ) · TV + V · T(MV )

= M(V · TV ) + (V · TV )(TM) = MA+ A (TM)

Now, note that the expression MA + A (TM) is linear as function of A. Thus,
we have that A is a solution of the linear matrix differential equation

X ′ = MX + TMX

with the initial condition X(0) = Idn. By using vectorization (that is, by stacking
columns) of matrices, it is not hard to show that this equation reduces to a system of
n2 first order linear differential equations (For n = 3, see the Table 2 below). Hence A is
the unique solution of

X ′ = MX + TMX, X(0) = Idn.

This fact, together with skew symmetry of M, implies A(t) = Idn, for all t ∈ I , since
X = Idn satisfies trivially the equation. In fact, Id′

n = 0 and

M Idn +
TM Idn = M+ TM = 0.

We conclude that {V1(t), V2(t), . . . , Vn(t)} is actually a orthonormal frame field. In real-
ity, it is a positively oriented orthonormal frame field, since it coincides with the canonical
basis at t = 0 (the det is a continuous function). It remains only to construct a curve f

for attaining the step 3.

In this point, we have a positively oriented orthonormal frame field
{V1(t), V2(t), . . . , Vn(t)}, t ∈ I , that satisfies (FS). Since V1 must be the unit tangent
vector of f , there is a natural way to choose the curve f , namely,

f(t) =

∫ t

0

ν(u)V1(u) du.

From this, we get f ′ = ν V1, or V1 = f ′/ν. For the moment, aiming to set up notations,
we suppose that f is a (n−1)-regular curve with speed νf , curvatures κfj , 1 ≤ j ≤ n− 1,
and Frenet frame {Vfj, 1 ≤ j ≤ n}. Hence

νf = ν;(i) Vf1 = V1;(ii)
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f ′′ = ν ′ V1 + ν2 κ1 V2;(iii)

f ′ ∧ f ′′ = ν3 κ1 V1 ∧ V2.(iv)

The Corolary 2.4, together with (iv), yields

κf1 =
∥f ′ ∧ f ′′∥

ν3
f

= κ1.

Using this and (ii), it follows that Vf2 = V2. In fact, the differentiation of (ii) gives
κf1νf Vf2 = κ1ν V2. Now, a direct calculation shows that

f ′ ∧ f ′′ ∧ f ′′′ = ν6 κ2
1 κ2 V1 ∧ V2 ∧ V3 = ν6

f κ
2
f1 κ2 V1 ∧ V2 ∧ V3

which, together with the Corolary 2.4 and the derivative of Vf2 = V2, implies κf2 =

κ2 and Vf3 = V3. By repeating this process inductively (as in the Theorem 2.1), we
conclude, for 2 ≤ m ≤ n, that

f ′ ∧ · · · ∧ f (m) = ν
m(m+1)

2 κm−1
1 κm−2

2 · · · κm−1 V1 ∧ · · · ∧ Vm,

which , in particular, shows the regularity of f , κfj = κj , 1 ≤ j ≤ n− 1, and Vfj = Vj ,
for 1 ≤ j ≤ n. We are done. □

Table 2. X ′ = MX + TMX, X = (Vij), as an usual system of linear differential
equations, n = 3, X = T(1 0 0 0 1 0 0 0 1) is the solution that corresponds to Id3



0 ν κ1 0 ν κ1 0 0 0 0 0
−ν κ1 0 0 0 ν κ1 0 ν κ2 0 0

0 0 0 −ν κ2 0 0 0 ν κ1 0
−ν κ1 0 ν κ2 0 ν κ1 0 0 0 0

0 −ν κ1 0 −ν κ1 0 ν κ2 0 ν κ2 0
0 0 0 0 −ν κ2 0 −ν κ1 0 ν κ2
0 −ν κ2 0 0 0 ν κ1 0 0 0
0 0 −ν κ1 0 −ν κ2 0 0 0 ν κ2
0 0 0 0 0 −ν κ2 0 −ν κ2 0





V11

V21

V31

V12

V22

V32

V13

V23

V33


=



V ′
11

V ′
21

V ′
31

V ′
12

V ′
22

V ′
32

V ′
13

V ′
23

V ′
33



EXAMPLE 3.7 We will consider the system (FS), with n = 3, ν =
√
2, κ1 = κ2 =

1√
2

and initial condition

V (0) =

((
0,

1√
2
,
1√
2

)
, (−1, 0, 0) ,

(
0,− 1√

2
,
1√
2

))
. (13)
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So, we have MV = V ′:
0 1√

2
0

− 1√
2

0 1√
2

0 − 1√
2

0


V1

V2

V3

 =

V ′
1

V ′
2

V ′
3

 , (3−FS)

subject to (13). We will indicate two ways for solving (3 − FS): one for illustrating the
conversion to an usual system of linear differential equations as in the Table 1 and the
other going hand in hand with an algorithm that plays a key rule in the classification of
the curves of constant curvatures. Thus, at the end, we will get a curve with speed

√
2,

curvature and torsion equal to 1
2
.

Solution 1. Let Vi(t) = (Vi1(t), Vi2(t), Vi3(t)), i = 1, 2, 3. Hence V = (V1, V2, V3) is the
unknown of the system, which converted to its usual form becomes M̃ Ṽ = Ṽ ′ :

0 0 0 1√
2

0 0 0 0 0

0 0 0 0 1√
2

0 0 0 0

0 0 0 0 0 1√
2

0 0 0

− 1√
2

0 0 0 0 0 1√
2

0 0

0 − 1√
2

0 0 0 0 0 1√
2

0

0 0 − 1√
2

0 0 0 0 0 1√
2

0 0 0 − 1√
2

0 0 0 0 0

0 0 0 0 − 1√
2

0 0 0 0

0 0 0 0 0 − 1√
2

0 0 0





V11

V12

V13

V21

V22

V23

V31

V32

V33


=



V ′
11

V ′
12

V ′
13

V ′
21

V ′
22

V ′
23

V ′
31

V ′
32

V ′
33


with

Ṽ (0) =

(
0,

1√
2
,
1√
2
,−1, 0, 0, 0,− 1√

2
,
1√
2

)
.

Remember that the important piece of the solution V is the vector V1 = (V11, V12, V13),
from which, by integration of ν V1, we construct the curve f .

It is well known fact that

Ṽ (t) = (etM̃) Ṽ (0) =

(
∞∑
j=0

tj

j!
M̃j

)
Ṽ (0)

is the unique solution of (3 − FS). An elementary procedure to calculate this solution
is indicated next. Patiently, only looking at the first three coordinates of Ṽ (t) and using
induction on j, it is possible to obtain that (V11, V12, V13) equals

1√
2

(
∞∑

m=0

(−1)m−1t2m+1

(2m+ 1)!
,

∞∑
m=0

(−1)mt2m

(2m+ 1)!
, 1

)
.
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Hence
V1(t) =

1√
2
(− sin t, cos t, 1).

Now, by integrating ν V1,∫ t

0

ν V1(u) du =

∫ t

0

√
2V1(u) du =

∫ t

0

(− sinu, cosu, 1) du = (cos t− 1, sin t, t),

which, after a translation, yields f(t) = (cos t, sin t, t), the very well known circular helix
of R3, as expected.

Solution 2. Here, we come back to consider the original system (3 − FS): MV = V ′,
where V = (V1, V2, V3), together with V (0) = (V1(0), V2(0), V3(0)), where

V1(0) =
(
0, 1√

2
, 1√

2

)
V2(0) = (−1, 0, 0)

V3(0) =
(
0,− 1√

2
, 1√

2

)
.

Again, the solution is V (t) = (etM)V (0). We are going to calculate V (t) and then the
curve f(t).

To reduce M to a simpler form, which is possible because it is a skew symmetric
matrix. Actually, there exists a orthogonal matrix Q such that N = Q−1MQ is a
block matrix of the kind

N =

 0 −a 0

a 0 0

0 0 0

 =

(
A 0

0 0

)
,

for some a ∈ R. This comes from the normal-form of a skew symmetric matrix
theorem, which can be found in [4].

(Step 1)

To calculate etN , this is easy, because the powers of N reduce to those of the block
A, whose exponential is not hard to get. We have that

etN =

(
etA 0

0 1

)
=

 cos at − sin at 0

sin at cos at 0

0 0 1

 .

(Step 2)
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We solve the new system N W = W ′, with W (0) = Q−1 V (0). Of course the
solution of this equation is W = etN (Q−1 V (0)).

(Step 3)

Finally, we obtain the desired solution of MV = V ′, namely, V = QW . In fact,
from the previous step, we get QW (0) = V (0) and

V ′ = QW ′ = QN W = MV.

(Step 4)

Now the execution of the steps. In the Step 1, according to the proof of the cited theorem,
we must consider Ms = M2 that a symmetric matrix and thus there exist a basis of
eigenvectors that diagonalizes it. From this basis we construct the matrix Q in the Step 1.
A direct calculation shows that Ms has an double eigenvalue λ1 = −1 and the other one
λ2 = 0. The vectors v1 =

(
− 1√

2
, 0, 1√

2

)
, v2 = (0, 1, 0) and v3 =

(
1√
2
, 0, 1√

2

)
are unit

eigenvectors of Ms, v1 and v2 are associated to λ1. (Remember that if P = (v1 v2 v3)

is the matrix whose columns are the column vectors v1, v2 and v3 then P−1Ms P =

diag (−1,−1, 0)). Looking carefully at the proof of the normal-form of a skew symmetric
matrix theorem that we cite above, we construct the matrix Q. Its columns are q1 = v1,
q2 =

1√
−λ1

M v1 and q3 = v3. More precisely,

Q =

− 1√
2
0 1√

2

0 1 0
1√
2

0 1√
2

 .

Hence

N = Q−1MQ =

 0 −1 0

1 0 0

0 0 0

 .

Now, we execute the Step 2 and get

etN =

 cos t − sin t 0

sin t cos t 0

0 0 1

 ,

Then the Step 3 gives us

W = etN (Q−1 V (0)) =


1
2

(√
2V2(0) sin t+ (V1(0)− V3(0)) cos t+ V1(0) + V3(0)

)
(V3(0)−V1(0)) sin t√

2
+ V2(0) cos t

1
2

(
−
√
2V2(0) sin t+ (V3(0)− V1(0)) cos t+ V1(0) + V3(0)

)

 .

64

Leandro Nery
64



LAJM v.1.n.1 (2022)

By substituting V1(0), V2(0) and V3(0) by their values (as row vectors), we obtain

W =


sin t − cos t 0

− cos t − sin t 0

0 0 1

 .

From this, it comes the solution V of MV = V ′:

V = QW =


− sin t√

2
cos t√

2
1√
2

− cos(t) − sin t 0
sin t√

2
− cos(t)√

2
1√
2

 .

The Steps are all done. By using the first row of V , we get the curve f , exactly as at the
end of the Solution 1, that is,

f(t) = (1, 0, 0) +

∫ t

0

√
2

(
−sinu√

2
,
cosu√

2
,
1√
2

)
du

= (cos t, sin t, t).

I hope this example, mainly its second solution, helps you in the proof of the theorem on
the classification of the curves of constant curvatures that we make in the next section.

4. On Curves of Constant Curvatures

In this section we will use the flowing notation, in order to simplify some calcula-
tions involving inner product in R2m.

Given X = (a1, b1, . . . , am, bm) ∈ R2m, the complex representation of X will be
indicate by

XC = (a1 + i b1, ..., am + i bm) ∈ Cm, i =
√
−1.

With this notation, together with the real part of z ∈ C, ℜ z, we get the following useful
properties:

X · Y = ℜ(XC · YC),(i)

X ·X = XC ·XC , that is, ∥X∥ = ∥XC∥,(ii)
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where the dot, · , indicates the usual inner products in R2m as well as that2 in Cm.

4.1. The Even Dimension Case

We start with an example in R4. Given t ∈ R, consider f(t) defined by

(r1 cos (a1t) , r1 sin (a1t) , r2 cos (a2t) , r2 sin (a2t)), (14)

where a1, a2, r1 and r2 positive numbers with a1 ̸= a2. The complex representation of f
in C2 is

g(t) = (f(t))C = (r1e
i ta1 , r2e

i ta2).

Note that
g′(t) = (i r1a1e

i ta1 , i r2a2e
i ta2),

and
g′′(t) = (−r1a

2
2e

i ta1 ,−r2a
2
1e

i ta2).

More generally,
g(j)(t) = (i jr1a

j
1e

i ta1 , i jr2a
j
2e

i ta2).

So, we obtain fast that

ν2 = ∥f ′∥2 = ∥g′∥2 = r21a
2
1 + r22a

2
2,

∥f ′′∥2 = ∥g′′∥2 = a41r
2
1 + a42r

2
2

and
f ′ · f ′′ = ℜ(g′ · g′′) = ℜ(−i

(
a31r

2
1 + a32r

2
2

)
) = 0.

The notable here is that, given any j and k in N, the inner product

g(j)(t) · g(k)(t) = (r1 (i a1)
j ei a1t)r1 (−i a1)

k e−i a1t + r2 (i a2)
j ei a2t)r2 (−i a2)

k e−i a2t)

= i j(−i )k
(
r21a

j+k
1 + r22a

j+k
2

)
= (−1)ki j+k

(
r21a

j+k
1 + r22a

j+k
2

)
does not depend on t and thus f (j)(t) · f (k)(t) as well. Thus for any j ∈ N,∥∥f ′ ∧ · · · ∧ f (j)

∥∥ does not depend on t and then all the curvatures of f must be constant,

2Z = (z1, z2, . . . , zm) ∈ Cm and W = (w1, w2, . . . , wm) ∈ Cm, then

Z ·W =

m∑
j=1

zjwj .
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according to the Corollary 2.4. Of course it remains to verify that f is at least 3-regular,
because without this information, it makes no sense to calculate its curvatures. For this
we return to R4 and write

f(t) =


cos (ta1) − sin (ta1) 0 0

sin (ta1) cos (ta1) 0 0

0 0 cos (ta2) − sin (ta2)

0 0 sin (ta2) cos (ta2)




r1

0

r2

0

 (15)

or f(t) = M(t)f(0). Note that M(t) is an one-parameter family of orthogonal matrices of
determinant 1. Moreover, we have that f (j)(t) = M(t)f (j)(0), for any j ∈ N. Collecting
this information, for j ∈ {1, 2, 3, 4}, in an matrix form, we obtain

(f ′(t) f ′′(t) f ′′′(t) f (4)(t)) = M(t) (f ′(0) f ′′(0) f ′′′(0) f (4)(t)).

In other words, the matrix (f ′(t) f ′′(t) f ′′′(t) f (4)(t)) equals
cos (ta1)− sin (ta1) 0 0

sin (ta1) cos (ta1) 0 0

0 0 cos (ta2)− sin (ta2)

0 0 sin (ta2) cos (ta2)




0 −a21r1 0 a41r1

a1r1 0 −a31r1 0

0 −a22r2 0 a42r2

a2r2 0 −a32r2 0

 .

Thus the rank of (f ′(t) f ′′(t) f ′′′(t) f (4)(t)) is equal to the rank of
(f ′(0) f ′′(0) f ′′′(0) f (4)(0)) that is equal to 4, which can be calculated directly or by
using the next Lemma. Now we can calculate the curvatures, by using the Corollary 2.4.

κ1 =
∥f ′′∥
ν2

=

√
a41r

2
1+a42r

2
2

a21r
2
1+a22r

2
2

;(i)

κ2 =
a2(a31−a1a22)r1r2

(a21r21+a22r
2
2)
√

a41r
2
1+a42r

2
2

;(ii)

κ3 =
a1a2√

a41r
2
1+a42r

2
2

.(iii)

As a particular case, consider r1 = 1, r2 = 1
2
, a1 = 1, a2 = 3 and, thus,

f(t) = (cos(t), sin(t),
1

2
cos(3t),

1

2
sin(3t)), t ∈ R.

We have that the curvatures of f are κ1 =
√

85
13

, κ2 = − 24√
85

and κ3 =
6√
85

. Now, we note

that the curve f is contained in the Clifford torus TC = S1(1)× S1(1
2
) ⊂ S3(

√
5
2
), where

S3(
√
5
2
) is the tridimensional sphere of radius

√
5
2

. By using the stereographic projection
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π : S3(
√
5
2
)− (0, 0, 0,

√
5
2
) −→ R3,

π(x1, x2, x3, xx4) =

( √
5x1√

5− 2x4

,

√
5x2√

5− 2x4

,

√
5x3√

5− 2x4

)
,

we can visualize the torus and the curve f in R3, as in the picture below

In the Theorem 4.3 below, we get, in particular, the converse of this example: If
a 3-regular curve in R4 has constant speed and curvatures, then it is as that in (14), up to
an isometry of R4. To finish, a remark on the angles a1 and a2. When they are equal, the
trace of f is contained in the intersection of the hyperplanes x3

r4
− x1

r1
= 0 and x4

r4
− x2

r1
= 0,

which has dimension 2. This would imply that f ′, f ′′, f ′′′ are linearly dependent, k2 = 0

and κ3 is not defined. Thus the condition a1 ̸= a2 guarantees that the curve f is 4-regular.

LEMMA 4.1 Given m distinct real numbers a1, . . . , am and any other real number b, de-
fine D(a1, a2, . . . , am) and D̃(a1, . . . , am, b) as in the Table 3 below. Then

(i) detD(a1, a2, . . . , am) =
(∏m

j=1 a
3
j

)∏m
i<j

(
a2i − a2j

)2.
(ii) det D̃(a1, . . . , am, b) =

(∏m
j=1 a

5
j

)∏m
i<j

(
a2i − a2j

)2.
Proof. We use induction on m. The idea of this proof is similar to that used

in the calculation of the Vandermonde determinant. Differently, here, the induction hy-
potheses is attained after two steps. In fact, we start writing D = D(a1, a2, . . . , am) =

(D1, D2, . . . , D2m), where Dj denotes the j th row of D and then by replacing a21 by λ in
the first row of D to construct the polynomial

p(λ) = det((0,−λ, 0, λ2, 0, . . . , (−1)mλm), D2, . . . , D2m).

68

Leandro Nery
68



LAJM v.1.n.1 (2022)

Table 3. Matrices for Lema 4.1

D(a1, a2, . . . , am) =



0 −a21 0 a41 . . . 0 (−1)ma2m1

a1 0 −a31 0 . . . (−1)m−1a2m−1
1 0

0 −a22 0 a42 . . . 0 (−1)ma2m2

a2 0 −a32 0 . . . (−1)m−1a2m−1
2 0

0 −a23 0 a43 . . . 0 (−1)ma2m3
...

...
...

...
. . .

...
...

0 −a2m 0 a4m . . . 0 (−1)ma2mm

am 0 −a3m 0 . . . (−1)m−1a2m−1
m 0


.

D̃(a1, . . . , am, b) =



0 −a21 0 a41 . . . 0 (−1)ma2m1 0

a1 0 −a31 0 . . . (−1)m−1a2m−1
1 0 (−1)ma2m+1

1

0 −a22 0 a42 . . . 0 (−1)ma2m2 0

a2 0 −a32 0 . . . (−1)m−1a2m−1
2 0 (−1)ma2m+1

2

0 −a23 0 a43 . . . 0 (−1)ma2m3 0
...

...
...

...
. . .

...
...

...

0 −a2m 0 a4m . . . 0 (−1)ma2mm 0

am 0 −a3m 0 . . . (−1)m−1a2m−1
m 0 (−1)ma2m+1

m

b 0 0 0 . . . 0 0 0



.

Hence, p either is zero or has degree at most m. Since a matrix with either one zero
row or two equal rows has zero determinant, we get that p vanishes at 0 and a2j , for each
2 ≤ j ≤ m. We claim that the degree of p is exactly m. In effect, the coefficient of λm is

cm = (−1)1+2m(−1)m M1(2m) = (−1)m+1M1(2m),

where M1(2m) is the (1, 2m)-minor of D. By factoring out a1, we get

M1(2m) = a1 det



1 0 −a21 0 . . . (−1)m−1a2m−2
1

0 −a22 0 a42 . . . 0

a2 0 −a32 0 . . . (−1)m−1a2m−1
2

0 −a23 0 a43 . . . 0
...

...
...

... . . . ...
0 −a2m 0 a4m . . . 0

am 0 −a3m 0 . . . (−1)m−1a2m−1
m


.

Denoting the (2m− 1)× (2m− 1) matrix above by B = (B1, B2, . . . , B2m−1), we define

69

Leandro Nery
69



LAJM v.1.n.1 (2022)

q(λ) to be
det((1, 0,−λ, 0, . . . , (−1)m−1λm−1), B2, . . . , B2m−1).

Note that we have substituted a21 by λ in the first row of B. The induction hypotheses
guarantees that the polynomial q has exactly degree m − 1 because the coefficient of
λm−1 equals

dm−1 = (−1)1+2m−1(−1)m−1 detD(a2, a3, . . . , am)

= (−1)m−1 detD(a2, a3, . . . , am) ̸= 0.

Looking back in the polynomial p, we see that

cm = (−1)m+1 a1 q(a
2
1) ̸= 0,

because ∂q = m − 1 and q vanishes at a22, a23, . . . , a2m that are m − 1 distinct numbers.
Now, we can factor p as

p(λ) = cm λ(λ−a22)(λ−a23) · · · (λ−a2m) = (−1)m+1 a1 q(a
2
1)λ(λ−a22)(λ−a23) · · · (λ−a2m),

which implies

detD = p(a21) = (−1)m+1 a1 q(a1) a
2
1

m∏
j=2

(a21 − a2j)

= (−1)m+1 a31 q(a
2
1)

m∏
j=2

(a21 − a2j).

(16)

Again from the induction hypothesis, we obtain that

q(λ) = dm−1(λ− a22)(λ− a23) · · · (λ− a2m)

= (−1)m+1 detD(a2, a3, . . . , am)
m∏
j=2

(λ− a2j)

= (−1)m+1

(
m∏
j=2

a3j

)(
m∏

2≤i<j

(
a2i − a2j

)2) m∏
j=2

(λ− a2j),

whence, we obtain q(a21) equal to

(−1)m+1

(
m∏
j=2

a3j

)(
m∏

2≤i<j

(
a2i − a2j

)2) m∏
j=2

(a21 − a2j)
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which substituted in (16) yields finally

detD =

(
m∏
j=1

a3j

)
m∏
i<j

(
a2i − a2j

)2
.

The result in (ii) follows easily from (i), completing the proof. □

REMARK 4.2 The element dij of D(a1, a2, . . . , am) equals f (j)(0) · ei, where ei is the
ith vector of the canonical basis of the R2m and f is as in the following classification
theorem.

THEOREM 4.3 Let ν > 0 and κj , 1 ≤ j ≤ n − 1, be constants such that κj > 0,
1 ≤ j ≤ n − 2, and κn−1 ̸= 0. Let f be a curve with speed ν and curvatures κj ,
1 ≤ j ≤ n− 1. Suppose that n is even. Then there exist positives real numbers aj and rj ,
1 ≤ j ≤ m, m = n

2
, such that, up to an isometry,

f(t) = (r1e
i t a1 , r2e

i t a2 , . . . , rme
i t am),

where ei t aj = cos taj + i sin taj .

Proof. Some of the ideas in this proof are suggested in [6] (2.16-Remark). We
give a full proof for n = 4 and believe that its extension to the general case is very easy.

Let f̃ be the 3-regular curve obtained from the unique solution

V = (V1, V2, V3, V4)

of the linear system MV = V ′ or, more explicitly,
0 νκ1 0 0

−νκ1 0 νκ2 0

0 −νκ2 0 νκ3

0 0 −νκ3 0




V1

V2

V3

V4

 =


V ′
1

V ′
2

V ′
3

V ′
4

 ,

with the initial condition V (0) = (Q1, Q2, Q3, Q4), where {Q1, Q2, Q3, Q4} will be an
orthonormal basis defined as follows. The existence of the curve f̃ is guaranteed by
the Theorem 3.1. Remember, f̃(t) =

∫ t

0
ν V1(u)du. Since M is skew symmetric, we

obtain from the normal-form of a skew symmetric matrix theorem an orthonormal basis
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{Q1, Q2, Q3, Q4} that reduces M to

N =


0 a1 0 0

−a1 0 0 0

0 0 0 a2

0 0 −a2 0

 ,

where 0 < a1 and 0 < a2. Actually, N = TQMQ, where Q is the 4 × 4 matrix whose
columns are the vectors Q1, Q2, Q3, Q4 viewed as column vectors. By rewriting the equa-
tion MV = V ′, with V (0) = (Q1, Q2, Q3, Q4), in terms of N , we get (QN TQ)V = V ′,
which is the same as

N T(QV ) = TQV ′ = (TQV )′,

subject to
(TQV )(0) = E = (e1, e2, e3, e4),

where {e1, e2, e3, e4} is the canonical basis of R4. By the uniqueness of solution of the
equation above, we must have QV = etN E or V = TQetN E, where, explicitly,

TQ =


q11 q21 q31 q41

q12 q22 q32 q42

q13 q23 q33 q43

q14 q24 q34 q44

 ,

etN =


cos (a1t) sin (a1t) 0 0

− sin (a1t) cos (a1t) 0 0

0 0 cos (a2t) sin (a2t)

0 0 − sin (a2t) cos (a2t)


and

E =


e1

e2

e3

e4

 .

The fours first rows of the product V = TQetN E is

V1(t) =


q11 cos (a1t)− q21 sin (a1t)

q11 sin (a1t) + q21 cos (a1t)

q31 cos (a2t)− q41 sin (a2t)

q31 sin (a2t) + q41 cos (a2t)

 =


√

q211 + q221 (− sin (a1t− c1))√
q211 + q221 cos (a1t− c1)√

q231 + q241 (− sin (a2t− c2))√
q231 + q241 cos (a2t− c2)
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where c1 and c2 are such that

sin c1 =
q11√

q211 + q221
, cos c1 =

q21√
q211 + q221

,

sin c2 =
q31√

q231 + q241
, cos c2 =

q41√
q231 + q241

.

Note that V1 is in fact an unit vector field. Integration of ν V1 yields

f̃(t) =

∫
ν V1(t)dt = ν



√
q211+q221
a1

cos (a1t− c1)√
q211+q221
a1

sin (a1t− c1)√
q231+q241
a2

cos (a2t− c2)√
q231+q241
a2

sin (a2t− c2))

 =


r1 cos (a1t− c1)

r1 sin (a1t− c1)

r2 cos (a2t− c2)

r2 sin (a2t− c2))

 .

Since we know that f̃ is 3-regular, it follows that a1 ̸= a2, according to the remark that
we did at the end of the example above. Furthermore, νf̃ = ν and κ̃j = κj , 1 ≤ j ≤ 3.
A simple computation shows that the curve f obtained from f̃ by taking c1 = c2 = 0

has also the speed ν and curvatures κj , 1 ≤ j ≤ 3, for the inner products involving its
derivatives are exactly the same as those of f̃ . We are done. □

REMARK 4.4 In [1] and [12], we find an approach involving one-parameter subgroup of
isometries to perform the calculations of the curvatures as well as to prove the constant
curvature classification theorem. Here, in (15), we have one example of such a subgroup,
namely, M(t), since M(t1 + t2) = M(t1)M(t2).

4.2. The Odd Dimension Case

Consider the following generalization of the circular helix f(t) given by

(r1 cos (a1t) , r1 sin (a1t) , r2 cos (a2t) , r2 sin (a2t) , bt),

t ∈ R, where a1, a2, r1 and r2 positive numbers with a1 ̸= a2 and b ̸= 0. The complex
representation of f in C3 is

g(t) = (f(t))C = (r1e
i ta1 , r2e

i ta2 , bt),

Note that g′(t) = (i r1a1e
i ta1 , i r2a2e

i ta2 , b), g′′(t) = (−r1a
2
1e

i ta1 ,−r2a
2
1e

i ta2 , 0). More
generally,

g(j)(t) = (i jr1a
j
1e

i ta1 , i jr2a
j
1e

i ta2 , 0),
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whenever j > 1. So

ν2 = ∥f ′∥2 = ∥g′∥2 = r21a
2
1 + r22a

2
2 + b2, ∥f ′′∥2 = ∥g′′∥2 = a41r

2
1 + a42r

2
2

and
f ′ · f ′′ = ℜ(g′ · g′′) = ℜ(−i

(
a31r

2
1 + a32r

2
2

)
) = 0.

As before, we get that f (j)(t) · f (k)(t) = ℜ(g(j)(t) · g(k)(t)) does not depend on t and thus
all of the curvatures of f must be constant. Of course it remains to verify that f is at least
3-regular, because without this information, it makes no sense to calculate its curvatures.
For this we return to R4 and write f(t) = N(t)f(0) + (0, 0, 0, 0, b t), where

N(t) =


cos (ta1) − sin (ta1) 0 0 0

sin (ta1) cos (ta1) 0 0 0

0 0 cos (ta2) − sin (ta2) 0

0 0 sin (ta2) cos (ta2) 0

0 0 0 0 1

 .

Note that N(t) is also a family of one-parameter of orthogonal matrices of determinant 1.
By collecting the derivatives f (j)(t), for j ∈ {1, 2, 3, 4, 5}, in an matrix, we obtain that
(f ′(t) f ′′(t) f ′′′(t) f (4)(t) f (5)(t)) is equal to the product

N(t)


0 −a21r1 0 a41r1 0

a1r1 0 −a31r1 0 a51r1

0 −a22r2 0 a42r2 0

a2r2 0 −a32r2 0 a52r2

b 0 0 0 0

 .

The Lemma 4.1 implies that the rank of

(f ′(t) f ′′(t) f ′′′(t) f (4)(t) f (5)(t))

is equal to 5. Hence f is 5-regular and then we can calculate its curvatures, by using the
Corollary 2.4.

κ1 =
∥f ′′∥
ν2

=

√
a41r

2
1+a42r

2
2

a21r
2
1+a22r

2
2

;(i)

κ2 =
a2(a31−a1a22)r1r2

(a21r21+a22r
2
2)
√

a41r
2
1+a42r

2
2

;(ii)

κ3 =
a1a2√

a41r
2
1+a42r

2
2

.(iii)

Now the theorem for the odd dimension case.
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THEOREM 4.5 Let ν > 0 and κj , 1 ≤ j ≤ n − 1, be constants such that κj > 0,
1 ≤ j ≤ n − 2, and κn−1 ̸= 0. Let f be a curve with speed ν and curvatures κj ,
1 ≤ j ≤ n− 1. Suppose that n is odd. Then there exist positives real numbers aj and rj ,
1 ≤ j ≤ m, m = n−1

2
, and b ̸= 0, such that, up to an isometry,

f(t) = (r1e
i t a1 , r2e

i t a2 , . . . , rme
i t am , b t).

Proof. It is similar to that of the Theorem 4.3. The only difference is that the
matrix N is now

N =


0 a1 0 0 0

−a1 0 0 0 0

0 0 0 a2 0

0 0 −a2 0 0

0 0 0 0 0

 , (17)

whence,

etN =


cos (a1t) sin (a1t) 0 0 0

− sin (a1t) cos (a1t) 0 0 0

0 0 cos (a2t) sin (a2t) 0

0 0 − sin (a2t) cos (a2t) 0

0 0 0 0 1

 .

This gives us the following curve f(t):

(r1 cos (a1t) , r1 sin (a1t) , r2 cos (a2t) , r2 sin (a2t) , bt).

Of course, there exist other possibilities for N , for instance, N could be

N =


0 a1 0 0 0

−a1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

which would lead to a curve of the kind

f(t) = (r1 cos (a1t) , r1 sin (a1t) , b1 t, b2 t, b3 t),

which has κ3 = 0 and undefined κ4. Similarly, any possibility other than N in (17) is
discarded. Of course, we have considered n = 5. The general case is almost as this. □
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