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Abstract. This paper explores the connection between tridiagonal matrices and the
repunit sequence, which is a type of Horadam sequence, and aims to establish new
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1. Introduction

The repunit numbers {rn}n≥0 are the terms of the sequence {0, 1, 11, 111, . . .}, where each
term satisfies the recursive formula rn+1 = 10rn + 1 for all n ≥ 0 and r0 = 0, the sequence
A002275 in OEIS[1]. In [2], the authors noted that this sequence also satisfies the recurrence
relation rn+1 = 11rn − 10rn−1, with initial condition r0 = 0, r1 = 1 and n ≥ 1.

For n natural, consider {hn} the Horadam sequence defined by the second order recurrence
relation, where p and q are fixed integers, such that

hn+1 = phn + qhn−1, n ≥ 1 ,
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with initial conditions h0 = a and h1 = b. This sequence was introduced by Horadam [3, 4], and it
generalizes many sequences with the characteristic recurrence relation of the form x2−px+q = 0.
More general results about the Horadam sequence can be found in [3, 5]. So if we let p = 11; q =

−10; a = 0; and b = 1; then the Horadam sequence is specified in the repunit sequence. Other
works explore the connections of the repunit sequence with the Lucas-type sequence, another
Horadam-type sequence, see [6, 7].

A tridiagonal matrix is a special kind of square matrix in which all elements are zero except
those on the main diagonal, the diagonal above the main diagonal (superdiagonal), and the diagonal
below the main diagonal (subdiagonal). For example, a 4 × 4 tridiagonal matrix might look like
this: 

a1 b1 0 0

c1 a2 b2 0

0 c2 a3 b3

0 0 c3 a4

 ,

where a1, a2, a3, a4 are the elements of the main diagonal, b1, b2, b3 are the elements of the
superdiagonal, and c1, c2, c3 are the elements of the subdiagonal. The importance of this type
of study for a particular sequence is that it is easy to express the determinant of this type of matrix.

The structure of this article is organized as follows. In Section 2, we revisit the Binet
formula for the repunit sequence, applicable to any integer index, and examine the recurrence
relation of this sequence, which is a specific case of the Horadam sequence. In Section 3,
we introduce a type of tridiagonal matrix, showing that, by specifying certain input values,
the determinant of this matrix generates the repunit sequence, thereby illustrating a practical
application. This discussion is further extended to two additional types of tridiagonal matrices
in the subsequent sections.

Although the repunit sequence is a particular sequence of Horadam-type, in this work
we use tridiagonal matrices to represent this sequence, a subject that is still little explored in
mathematical literature.

2. Repunit numbers and Binet formula

Note that the difference equation associated with the sequence of repunit {rn}n≥0 is

rn+1 = 11rn − 10rn−1 , r0 = 0 and r1 = 1 . (1)

The characteristics equation for the second order linear difference Equation (1) is given by x2 −
11x+10 = 0 and its real roots are x1 = 10 and x2 = 1. And from the theory of difference equation
we know that the general term of the Equation (1) can be expressed as:

rn = c1(x1)
n + c2(x2)

n,
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where c1 and c2 are arbitrary constants (to be evaluated) and x1 and x2 are characteristics roots.
We find c1 =

1
9

and c2 = −1
9
. So we have that the Binet’s formula, for all n ∈ N:

rn =
10n − 1

9
. (2)

The Equation (2) presents the classic and well-known Binet’s formula for the sequence of repunit
{rn}n≥0, a formula to calculate the n-th term of the repunit sequence, see the references [8, 9, 10]
.

The repunit sequence are also extendable in the negative direction which can be achieved
by rearranging Equation (1). It is also noted that

r−n = − rn
10n

for all n ≥ 0.

It follows from the definition that repunit sequence with negative index is the set of elements given
by

{r−n}n≥1 =

{
− 1

10
, − 11

102
, −111

103
, . . . ,

}
= {−0.1; −0.11; −0.111, . . . , } .

The first few repunit numbers with negative subscript are given in the following Table 1,
with −8 ≤ n ≤ −1:

n -1 -2 -3 -4 -5 -6 -7 -8
rn - 0.1 -0.11 -0.111 -0.1111 -0.11111 -0.111111 -0.1111111 -0.11111111

Table 1. Repunit numbers at negative index [11]

According [11], observation of Table 1, the repunit sequence with negative index {r−n}n≥1

satisfies the recurrence relation

r−(n+1) =
11

10
r−n −

1

10
r−(n−1) with r−1 = −0.1 and r−2 = −0.11 ; (3)

for n = 1, 2, 3, . . . .

See that the recurrence r−(n+1) =
11

10
r−n−

1

10
r−(n−1) has Horadam characteristic equation

given by

x2 − 11

10
x+

1

10
= 0 , (4)

whose roots are x1 =
1

10
and x2 = 1. We find c1 = −1

9
and c2 = 1

9
. Then, the Binet’s formula

from the repunit sequence with negative index, as follows.

Proposition 2.1. [11] For all n ≥ 1, we have

r−n = −10n − 1

9 · 10n
, (5)

where {r−n}n≥1 is the repunit sequence.
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3. Tridiagonal repunit matrix

In this section, we will investigate the tridiagonal matrices and their connections to repunit
sequences.

We remember that a tridiagonal matrix is a square matrix of order n in which the non-zero
elements are located only on the main diagonal, the subdiagonal, and the superdiagonal. In other
words, the non-zero elements are those on the main diagonal and those located immediately above
and below it.

Let us consider a square matrix Mn of order n ≥ 1 defined by:

Mn =



a b 0 0 · · · 0 0 0

c d e 0 · · · 0 0 0

0 c d e · · · 0 0 0

0 0 c d · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · d e 0

0 0 0 0 · · · c d e

0 0 0 0 · · · 0 c d


, (6)

where a, b, c, d and e are non-zero real numbers.

Initially, the auxiliary result that we present below.

Lemma 3.1. [12, 13] The matrix Mn is tridiagonal and for all n ≥ 2 we have:

|Mn+1| = d|Mn| − ce|Mn−1| .

Here, we consider certain special tridiagonal matrices that enable us to determine the terms
of the repunit numbers through the determinant of such matrices. According to Cahill et al [14]
and Falcom [12], a tridiagonal matrix associated with a Horadam-type sequence is a square matrix
of order n in which the determinant is the general expression of the sequence. Thus, a tridiagonal
matrix associated with the repunit sequence {rn}n≥0 is presented in [13].

For all n ≥ 1, in the Equation (6), by taking a = 11, b = −1, c = −10, d = 11 and
e = −1, as shown in the following matrix:

Rn =



11 −1 0 · · · 0 0 0

−10 11 −1 · · · 0 0 0

0 −10 11 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 11 −1 0

0 0 0 · · · −10 11 −1

0 0 0 · · · 0 −10 11


. (7)
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The matrix Rn is the repunit tridiagonal matrix.
Example 3.2. The direct calculation of the determinant of the repunit tridiagonal matrix Rn for
n = 1 and n = 2 shows the following values

|R1| = 11 = r2, and |R2| = 11 · 11− (−1) · 10 = 111 = r3 .

We will apply the same procedure for n = 3 and n = 4.

|R3| =

∣∣∣∣∣∣∣
11 −1 0

−10 11 −1

0 −10 11

∣∣∣∣∣∣∣ = 11

∣∣∣∣∣ 11 −1

−10 11

∣∣∣∣∣− (−1)

∣∣∣∣∣−10 −1

0 11

∣∣∣∣∣
=11|R2| − (−1)(−10)|R1| = 1111 = r4

|R4| =

∣∣∣∣∣∣∣∣∣∣
11 −1 0 0

−10 11 −1 0

0 −10 11 −1

0 0 −10 11

∣∣∣∣∣∣∣∣∣∣
= 11

∣∣∣∣∣∣∣
11 −1 0

−10 11 −1

0 −10 11

∣∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣∣
−10 −1 0

0 11 −1

0 −10 11

∣∣∣∣∣∣∣
=11|R3|+ 11

∣∣∣∣∣−10 −1

0 11

∣∣∣∣∣− (−10)

[
−10 0

0 −1

]
=11|R3| − (−1)(−10)|R2| = r5 .

This procedure can be generalized to any n > 3, it is shown that in Proposition 3.3.
Therefore, note that
Proposition 3.3. [13] Consider the tridiagonal matrix Rn of order n given in the Equation (7).
For all n ≥ 1, we have that

|Rn| = rn+1 ,

where {rn}n≥0 is the repunit sequence.

Remember that a matrix A is said to be invertible (or non-singular) when there exists
another matrix denoted by A−1 such that A−1 ·A = A ·A−1 = I , where I is the identity matrix of
order n. Let us see an example.

Example 3.4. Let A =


11 −1 0 0

−10 11 −1 0

0 −10 11 −1

0 0 −10 11

 be a tridiagonal matrix. Then its inverse is given

by A−1 =


1111
11111

111
11111

11
11111

1
11111

1110
11111

1221
11111

121
11111

11
11111

1100
11111

1210
11111

1221
11111

111
11111

1000
11111

1100
11111

1110
11111

1111
11111

.

In general, as in Example 3.4, a tridiagonal matrix does not have a tridiagonal matrix
inverse. This makes it difficult to establish a direct connection between the matrix Rn and the
negative indices of rn through the direct inversion of Rn.
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Now, we presented a tridiagonal matrix associated with repunit sequence {r−n}n≥0.
Similarly, by substituting a = − 11

100
, b = 1

10
, c = − 1

10
, d = 11

10
and e = −1 into the matrix

in the Equation (6), we find:

R−n =



− 11
100

1
10

0 · · · 0 0 0

− 1
10

11
10

−1 · · · 0 0 0

0 − 1
10

11
10

· · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 11
10

−1 0

0 0 0 · · · − 1
10

11
10

−1

0 0 0 · · · 0 − 1
10

11
10


. (8)

The matrix R−n presented in the Equation (8) is an extension of the repunit tridiagonal matrix at
negative indices or simply repunit tridiagonal matrix R−n.
Example 3.5. The direct calculation of the determinant of tridiagonal repunit matrix R−n for
n = 1, n = 2, and n = 3 is

|R−1| = − 11

100
= r−2 ;

|R−2| =

∣∣∣∣∣− 11
100

1
10

− 1
10

11
10

∣∣∣∣∣ = −11

100
· 11
10

− 1

10
· (−1)

10
= − 111

1000
= r−3 ;

|R−3| =

∣∣∣∣∣∣∣
− 11

100
1
10

0

− 1
10

11
10

−1

0 − 1
10

11
10

∣∣∣∣∣∣∣
=

−11

100
· 11
10

· 11
10

+ 0 + 0− −11

100
· −1

10
· (−1)− −1

10
· 1

10
· 11
10

− 0

= −113

104
+

11

103
+

11

103
=

−1331 + 220

104
= −1111

104
= r−4 .

We exhibit in the Example 3.5 that by considering n = 1, n = 2 or n = 3 in the
Equation (8), we obtain r−2, r−3 or r−4, respectively, from the determinant of the matrix R−n.

The Proposition 3.6 shows that for n ≥ 3, the determinant of R−n provides the predecessor
term in the repunit sequence with negative subscript. Thus, we have
Proposition 3.6. Consider the repunit tridiagonal matrix R−n of order n given in the Equation (8).
For all n ≥ 1, we have |R−n| = r−(n+1), where {rn}n≥0 is the repunit sequence.

Proof. For n = 1, the result follows from Example 3.5.

On the other hand, for n ≥ 2, it suffices to apply Lemma 3.1, and we obtain that

|R−(n+1)| =
11

10
|R−n| −

(
− 1

10

)
· (−1)|R−(n−1)| .

Now, using induction on n, assume that the property is true for all values less than or equal to n.
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We have |R−n| = r−(n+1) and |R−(n−1)| = r−n. So, according Equation (3)

|R−(n+1)| =
11

10
r−(n+1) −

(
1

10

)
· r−(n+1)

= r−(n+2) .

Therefore, by the principle of mathematical induction, the property is true for all
non-negative integers n.

4. Second tridiagonal repunit matrix

According [13], consider the other tridiagonal matrix R′
n of order n+ 1 given by

R′
n =



0 1 0 0 · · · 0 0

−1 0 −10 0 · · · 0 0

0 −1 11 −10 · · · 0 0

0 0 −1 11 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 11 −10

0 0 0 0 · · · −1 11


. (9)

Example 4.1. Note that when we calculate the determinant of R′
n for n = 0, 1, 2, and 3, we obtain

that
|R′

0| = 0 = r0 and |R′
1| = 0 · 0− (−1) · 1 = 1 = r1 ,

|R′
2| =

∣∣∣∣∣∣∣
0 1 0

−1 0 −10

0 −1 11

∣∣∣∣∣∣∣ = (−1)1+2

∣∣∣∣∣−1 −10

0 11

∣∣∣∣∣ = 11 = r2,

|R′
3| =

∣∣∣∣∣∣∣∣∣∣
0 1 0 0

−1 0 −10 0

0 −1 11 −10

0 0 −1 11

∣∣∣∣∣∣∣∣∣∣
= (−1)1+2

∣∣∣∣∣∣∣
−1 −10 0

0 11 −10

0 −1 11

∣∣∣∣∣∣∣
= −

(
(−1)(−1)1+1

∣∣∣∣∣11 −10

−1 11

∣∣∣∣∣
)

= 111 = r3 .

When we analyze the determinant for the cases, we notice that this procedure can be
generalized by Proposition 4.2 below.
Proposition 4.2. [13] Consider the tridiagonal matrix R′

n of order n + 1 given in the Equation
(9). For all n ≥ 0, the n-th repunit number is given by |R′

n| = rn, where {rn}n≥0 is the repunit
sequence.

To prove this result, we simply use the Laplace expansion for the determinant. This is the

LAJM v. 04 n. 01 (2025) 7
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same expansion we used in Example 4.1.

Similarly, let the matrix R′
−n of order n+ 1 be given by

R′
−n =



0 1 0 0 · · · 0 0
1
10

0 − 1
10

0 · · · 0 0

0 −1 11
10

− 1
10

· · · 0 0

0 0 −1 11
10

· · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 11
10

− 1
10

0 0 0 0 · · · −1 11
10


. (10)

We will analyze some particular cases to illustrate the calculation of the determinant.

Example 4.3. For n = 1, the result is easily obtained, just note that

|R′
−1| =0 · 0− 1

10
· 1 = − 1

10
= r−1 .

Now, for n = 2 and n = 3, we have

|R′
−2| =

∣∣∣∣∣∣∣
0 1 0
1
10

0 − 1
10

0 −1 11
10

∣∣∣∣∣∣∣ = 1 · (−1)1+2

∣∣∣∣∣ 110 − 1
10

0 11
10

∣∣∣∣∣ = − 11

100
= r−2 ,

and,

|R′
−3| =

∣∣∣∣∣∣∣∣∣∣
0 1 0 0
1
10

0 − 1
10

0

0 −1 11
10

− 1
10

0 0 −1 11
10

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣
1
10

− 1
10

0

0 11
10

− 1
10

0 −1 11
10

∣∣∣∣∣∣∣
=− 1

10

∣∣∣∣∣ 1110 − 1
10

−1 11
10

∣∣∣∣∣ = − 111

1000
= r−3 .

We now present an auxiliary result that will be useful in the following result.

Lemma 4.4. Consider the tridiagonal matrix Un of order n given by

Un =



11
10

− 1
10

0 · · · 0 0

−1 11
10

− 1
10

· · · 0 0

0 −1 11
10

· · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 11

10
− 1

10

0 0 0 · · · −1 11
10


.

For all n ≥ 1, then − 1
10
|Un| = r−(n+1), where {rn}n≥0 is the repunit sequence.
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In a manner similar to Proposition 3.6, the proof of Lemma 4.4 can be carried out using
induction on n.

To conclude this section, we highlight an interesting result that connects the determinant of
the matrix R′

−n to negative index repunit. Namely, we have:

Proposition 4.5. Consider the tridiagonal matrix R′
n of order n + 1 given in the Equation (10).

For all n ≥ 1, then |R′
−n| = r−n, where {rn}n≥0 is the repunit sequence.

Proof. In Example 4.3 displays the determinant of R′
n up to n = 3. For n ≥ 3 and using Laplace’s

expansion, we have

|R′
−n| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0 0
1
10

0 − 1
10

0 · · · 0 0

0 −1 11
10

− 1
10

· · · 0 0

0 0 −1 11
10

· · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 11
10

− 1
10

0 0 0 0 · · · −1 11
10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=1 · (−1)1+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
10

− 1
10

0 · · · 0 0

0 11
10

− 1
10

· · · 0 0

0 −1 11
10

· · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 11

10
− 1

10

0 0 0 · · · −1 11
10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=− 1

10
· (−1)1+1

∣∣∣∣∣∣∣∣∣∣∣∣

11
10

− 1
10

· · · 0 0

−1 11
10

· · · 0 0
...

... . . . ...
...

0 0 · · · 11
10

− 1
10

0 0 · · · −1 11
10

∣∣∣∣∣∣∣∣∣∣∣∣
=− 1

10
|Un−1| .

Applying Lemma 4.4, we conclude that |R′
−n| = r−n , and this completes the proof.

5. Third tridiagonal matrix

In this section, we present a third form of a tridiagonal matrix. In particular, we will apply
the determinant of this type of matrix connecting with the repunit sequence, remember, a type of
Horadam sequence.

This matrix was defined by [15, 16]. To construct a n×n tridiagonal matrix Tn = [tij] with

LAJM v. 04 n. 01 (2025) 9
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entries tk,k = x1 + x2 ; tk,k+1 = x2, and tk+1,k = x1 for 1 ≤ k ≤ n− 1; that is,

Tn =



x1 + x2 x2 0 0 · · · 0 0 0

x1 x1 + x2 x2 0 · · · 0 0 0

0 x1 x1 + x2 x2 · · · 0 0 0

0 0 x1 x1 + x2 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · x1 + x2 x2 0

0 0 0 0 · · · x1 x1 + x2 x2

0 0 0 0 · · · 0 x1 x1 + x2


, (11)

where x1, x2 are real or complex numbers such that x1x2 ̸= 0 and (x1 + x2)
2 ̸= 4x1x2.

Example 5.1. Let us observe that, for n = 1, 2, 3, we have:

|T1| = x1 + x2 ;

|T2| =

∣∣∣∣∣x1 + x2 x2

x1 x1 + x2

∣∣∣∣∣ = x2
1 + x1x2 + x2

2 ;

|T3| =

∣∣∣∣∣∣∣
x1 + x2 x2 0

x1 x1 + x2 x2

0 x1 x1 + x2

∣∣∣∣∣∣∣
= (x1 + x2)

∣∣∣∣∣x1 + x2 x2

x1 x1 + x2

∣∣∣∣∣− x2

∣∣∣∣∣x1 x2

0 x1 + x2

∣∣∣∣∣
= (x1 + x2)|T 2| − x1x2|T 1| = x3

1 + x2
1x2 + x1x

2
2 + x3

2 .

In general, we have that

Proposition 5.2. [15, 16] Let’s Tn the tridiagonal matrix of order n defined by the Equation (11).
Then, for all n ≥ 1

|Tn| =
n∑

k=0

xn−k
1 xk

2 .

According [15, 16], by rewriting Proposition 5.2 as described above, we arrive at the
following result

|Tn| =
n∑

k=0

xn−k
1 xk

2 = xn
1 + xn−1

1 x2 + xn−2
1 x2

2 + . . .+ x1x
n−1
2 + xn

2

=
xn+1
1 − xn+1

2

x1 − x2

.

(12)

Let x1 and x2 be the distinct roots of the equation x2 − px + q = 0, the Horadam
characteristic equation of recurrence.

LAJM v. 04 n. 01 (2025) 10
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Specifying x1 = 10 and x2 = 1 into Proposition 5.2, it coincides with the Binet Formula
for repunit numbers, Equation (2), thus showing that

Proposition 5.3. Let’s Tn the tridiagonal matrix of order n defined by the Equation (11), with
x1 = 10 and x2 = 1 . Then, for all n ≥ 1, |Tn| = rn+1, where {rn}n≥0 is the repunit sequence.

Similarly, substituting x1 =
1
10

and x2 = 1 in Proposition 5.2, it is shown that

Proposition 5.4. Let’s Tn the tridiagonal matrix of order n defined by the Equation (11), with
x1 =

1
10

and x2 = 1. Then, for all n ≥ 1, |Tn| = r−(n+1), where {rn}n≥0 is the repunit sequence.

6. Final Considerations

Sequences exhibiting specific periodicity properties, notably the repunit, find application in
digital representations and theoretical computer science, thus rendering them pertinent to discrete
mathematics and cryptography. Tridiagonal matrices, defined by nonzero elements exclusively on
the main diagonal and the diagonals directly above and below it, find numerous applications in
diverse fields of science, mathematics, and engineering.

In this work, we extended the tridiagonal matrices presented in [13] for the repunit
sequence {rn}n≥0 to include the repunit sequence with negative indices {r−n}n≥1. Additionally,
we presented a direct application of a result from [15, 16], which linked tridiagonal matrices
associated with second-order linear recurrences to the repunit sequence for all integers n. The
paper presented a novel application of tridiagonal matrices to the repunit sequence, an area that
has been less explored in mathematical literature. The elegance of the results lay in the simplicity
of their proofs, which were neither overly complex nor lengthy. They primarily relied on the use
of Lagrange identities for calculating determinants, followed by induction to establish the results.

Through this approach, we aimed to inspire further studies on this class of numbers and
the tridiagonal matrices, potentially leading to the discovery of new results. The exploration of
matrix-based representations of these sequences could inspire other studies in the combinatorial
theory of matrices.
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