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Abstract. In this research, we will study the existence of weak solutions for a
class of implicit elliptic equations involving the p-biharmonic operator. Using
a Krasnoselskii-Schaefer type theorem we establish our result, extending and
complementing those obtained by R. Precup, 2020, and P.C. Carrião et al., 2009.
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1. Introduction

In this research we focus on the following boundary elliptic problem:

△2
pu = f(x, u,△u,△2

pu) + g(x, u,△u) in Ω,

u =
∂u

∂ν
= 0 on Γ,

(1)

where Ω is a bounded domain in Rn with smooth boundary Γ, (n ≥ 3), △2
pu = △(|△u|p−2△u) is

the p-biharmonic operator, 2 < p < +∞, f : Ω×R×Rn ×R → R and g : Ω×R×Rn → R are
Carathéodory functions.

In 1958, Krasnoselskii proved his famous result on the existence of fixed point for a sum
of two operators, one of which is a contraction and the second one is compact, defined in a convex
and closed set, and concluding that its sum has a fixed point. Since then, many extensions have
emerged with various types of generalized contractions and generalized compact operators, which
are generally applied to the resolution of specific problems posed in natural sciences and physics.
In particular, his result gives a method for solving Dirichlet problems in which nonlinear sources
can be expressed by the sum of two terms to which appropriate restrictions are imposed to fulfill the
hypotheses in Krasnoselskii’s theorem. Precup [1] studied the Dirichlet problem with the Laplacian
operator (p = 2) for implicit equations involving two sources, one source containing the Laplacian
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and another containing the gradient, via a Krasnoselskii-type fixed point theorem and suggested
the application of his technique to general elliptic operators that replace the Laplacian and to other
classes of implicit differential equations, e.g. equations of type F (x, u(x), Du(x), D2u(x)) = 0,
which it is not possible to write it as an equivalent equation linear with respect to the operator
with the second derivatives D2u). Let us emphasize that, in this case, equation (1) represents a
quasilinear PDE of fourth order with a linear operator, the function f is Lipchiz of linear growth
and the function g satisfies a condition of negative sign in the second variable with more flexible
growth, but more restrictive in the third variable (see hypothesis (A2) below). However when
p > 2, the operator has a strongly nonlinear behavior, the growth of f is sublinear and g has sub
p-quadratic growth which implies a greater difficulty in the analysis.

Thus, inspired by the ideas introduced by Precup, this paper aims to study the existence
of solutions for the implicit equation (1) involving the p-biharmonic operator with p > 2. This
extension is not trivial due to the mathematical difficulties posed by the degenerate quasilinear
elliptic operator, compared to the bi-harmonic operator (also known as the bilaplacian): the lack
of Hilbert structure of the domain of the operator, the absence of linearity and the complicated
spectral properties. Problems like (1) arise in the theory of bending extensible elastic beams on
nonlinear elastic foundations; the solution u = u(x) represents a thin extensible elastic beam,
while the functions f and g act as a forces exerted on the beam by the foundation. Thus, the
problem represents the bending equilibrium of the system. It also allow furnishes a model to
study traveling waves in suspension bridges (see [2, 3, 4]). We point out that implicit elliptic
equations have been intensively studied in the literature (see [5, 6, 7, 8] and references therein),
and have multiple applications to the calculus of variations, nonlinear elasticity, problems of phase
transitions and optimal design (see, e.g., [9, 10, 11, 12, 13, 14]).

To our knowledge there are few works related to implicit equations with the p-biharmonic
operator. In [15], implicit equations containing the p-Laplacian operator were investigated using a
selection theorem for decomposable-valued multifunctions. In [8], an implicit equation involving
a Laplacian-like operator, but looking for solutions in W 2,p(Ω) ∩ W 1,p

0 (Ω), was studied in the
context of set-valued analysis. We apply the fixed point technique to solve problem (1) which, in
our opinion, is a more direct and accessible procedure to solve equations of this type.

It is worth mentioning that in [16] the authors have introduced p-polyharmonic operators
and in [17] the results was extended to nonlocal higher-order problems. Both situations have been
treated via variational methods. In this regard, we suggest analyzing the remark at the end of this
work.

The paper is organized as follows. In Section 2, as preliminaries, we recall some properties
of the inverse operator of p-Laplacian and the main tool, a hybrid theorem of Krasnoselskii type
due to Gao et al.[18]. Section 3 is devoted to state and prove our main result about existence of
weak solutions for problem (1).
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2. Preliminaries

Let W 2,p
0 (Ω), (1 < p), be the usual Sobolev space equipped with the norm

∥u∥ =

(∫
Ω

|△u|p dx
)1/p

, u ∈ W 2,p
0 (Ω)

and ∥u∥p =
(∫

Ω
|u|p dx

)1/p denotes the norm in Lp(Ω).

By the Sobolev embedding theorem, for any 2 ≤ θ ≤ p∗∗ = Np
N−2p

(2 ≤ θ < p∗∗), p < N
2
,

the embedding W 2,p
0 (Ω) ↪→ Lθ(Ω) is continuous (compact) and there exists a positive constant Cθ

such that ∥u∥θ ≤ Cθ∥u∥ , for all u ∈ W 2,p
0 (Ω) (See [19]).

Consider the first eigenvalue λ1 of the problem△(|△u|p−2△u) = λ1|u|p−2u in Ω,

u = ∂u
∂ν

= 0 on Γ.

Thanks to the work of Khalil et al. [20], one has that

λ1 := inf
u∈W 2,p

0 (Ω)\{0}

∫
Ω
|△u|p dx∫
Ω
|u|p dx

is isolated and simple, also its corresponding first eigenfunction is positive. Thus, the
best(smallest) embedding constant for the inclusion W 2,p

0 (Ω) ↪→ Lp(Ω) is 1/ p
√
λ1 (See [21])

Let W−2,p′(Ω) be the dual space of W 2,p
0 (Ω). Also, an embedding constant for the inclusion

Lp′(Ω) ↪→ W−2,p′(Ω) is 1/ p
√
λ1.

Remark 2.1. The embedding constant for this inclusion can be evaluated through λ1. In fact

∥v∥W−2,p′ (Ω) = sup
∥u∥≤1

∫
Ω

u(x)v(x) dx ≤ sup
∥u∥≤1

∥u∥p∥v∥p′ ≤ λ−1/p∥v∥p′

for all v ∈ Lp′(Ω).

It is well known, that the problem△2
pu = f in Ω,

u = ∂u
∂ν

= 0 on Γ,

has a unique weak solution u ∈ W 2,p
0 (Ω) for f ∈ W−2,p′(Ω). Thus, S = −△2

p : W 2,p
0 (Ω) →

W−2,p′(Ω) has the following properties:

(i) S is bijective and uniformly continuous on bounded sets.
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(ii) The operator S−1 : W−2,p′(Ω) → W 2,p
0 (Ω) is continuous and the following estimate holds

∥S−1v1 − S−1v2∥ ≤ M
1/(p−1)
1 ∥v1 − v2∥1/(p−1)

−2 for any v1, v2 ∈ W−2,p′(Ω), (2)

for some constant M1 > 0 independent of v1 and v2.
(iii)

∥Su∥−2 = ∥u∥p−1, u ∈ W 2,p
0 (Ω), (3)

where ∥.∥−2 denotes the norm in W−2,p′(Ω), 1/p+ 1/p′ = 1.

We recall that our approach is based on a extension of Krasnoselskii’s theorem, which
combine Banach’s contraction principle with Schaefer’s fixed point theorem due to Gao, Li and
Zhang [18], and on the previous mentioned work [1] by Precup.
Theorem 2.2 (Gao-Li-Zhang). Let DR be a closed ball centered at the origin and of radius R of
a Banach space X , and let A,B be operators such that

(i) A : X → X is a contraction;

(ii) B : DR → X is continuous with B (DR) relatively compact;

(iii) x ̸= A(x) + λB(x), for all x ∈ ∂DR and λ ∈]0, 1[.

Then the operator A+B has at least one fixed point, i.e., there exits x ∈ DR such that

x = A(x) +B(x).

Remark 2.3. In practice, we use the method of a priori estimates, so both operators A,B are
defined on the whole space X , and a ball DR as required by condition (iii) of Theorem 2.2 exists
if the set

Y = {x ∈ X|x = A(x) + λB(x), for some λ ∈ [0, 1]}

is bounded in X .
Lemma 2.4. For any (p∗∗)′ ≤ τ ≤ p, the embeddings

W 2,p
0 (Ω) ↪→ Lτ (Ω), Lp(Ω) ↪→ Lτ (Ω), Lτ (Ω) ↪→ W−2,p′(Ω),

are continuous, and we may consider positive constants c1, c2, c3 such that

∥u∥τ ≤ c1∥u∥, ∥u∥τ ≤ c2∥u∥p, ∥u∥−2 ≤ c3∥u∥τ , (4)

with
c2 = c1

p
√
λ1, c3 =

cΩ

c1λ
2/p
1

, and cΩ = |Ω|(p−2)/p.

Proof. From (4), we get

∥u∥τ ≤ c2∥u∥p ≤
c2
p
√
λ1

∥u∥, for u ∈ W 2,p
0 (Ω),
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which give us c2 = c1
p
√
λ1.

On the other hand, in view of the inclusions Lp′(Ω) ↪→ W−2,p′(Ω), Lp(Ω) ↪→ Lp′(Ω), we
have for u ∈ W 2,p

0 (Ω)

∥u∥−2 ≤
1

p
√
λ1

∥u∥p′ ≤
cΩ
p
√
λ1

∥u∥p ≤
cΩ

λ
2/p
1

∥u∥.

Now, since
∥u∥−2 ≤ c3∥u∥τ ≤ c3c1∥u∥,

it follows that c1c3 = cΩ/λ
2/p
1 .

We seek weak solutions of our problem, i.e. functions u ∈ W 2,p
0 (Ω) with

f(., u,△u,△2
pu) + g(., u,△u) ∈ W−2,p′(Ω) and

⟨△2
pu, v⟩ = ⟨f(x, u,△u,△2

pu) + g(x, u,△u), v⟩ for all v ∈ W 2,p
0 (Ω),

where ⟨u, v⟩ denotes the duality pairing between W−2,p′(Ω) and W 2,p
0 (Ω). Setting v = Su,

equation (1) is equivalent to the fixed point equation

v = f
(
x, S−1v,△S−1v,−v

)
+ g

(
x, S−1v,△S−1v

)
, (5)

which will be solved in the Lebesgue space Lτ (Ω) with τ ≥ (p∗∗)′.

Define operators A,B : Lτ (Ω) → Lτ (Ω) by

Av = f (·, S−1v,△S−1v,−v) ,

Bv = g (·, S−1v,△S−1v) .

Then equation (5) becomes the operator equation

v = A(v) +B(v).

Our idea is to use Theorem 2.2 to find the fixed point for the sum A+B in W 2,p
0 (Ω). For this goal,

we need to impose additional conditions on f and g to guarantee that the two operators are well
defined from Lτ (Ω) to itself, and then, we will show that A is a contraction, and B is completely
continuous. We conclude, by establishing a priori bounds for the solutions to the problem as
required by Remark 2.3.

3. Existence of Solutions

In this section, we present our main result. More precisely, under suitable conditions, we
prove the existence of a solution to problem (1) by applying Theorem 2.2.

First, we give the following hypotheses on f and g.
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(A1) There exist a, b, c ≥ 0 such that

|f(x, y, z, w)− f(x, y, z, w)| ≤ a|y − y|p−1 + b|z − z|p−1 + c|w − w|,
f(· , 0, 0, 0) ∈ Lp(Ω).

(A2) There exist constants a0, b0 ≥ 0, α ∈ [1, p∗∗/(p∗∗)′], β ∈ [1, p/(p∗∗)′], and h ∈ Lp(Ω) such
that

|g(x, y, z)| ≤ a0|y|α + b0|z|β + h(x) for any y ∈ R, z ∈ Rn and a.e x ∈ Ω.

(A3) yg(x, y, z) ≤ σ|y|p ∀y ∈ R, z ∈ Rn, a.e x ∈ Ω, for some σ < σ0λ1, 0 < σ0 <

1, where λ1 is the first eigenvalue of (−△2
p,W

2,p
0 (Ω)) .

(A4) ℓ0 :=

(
a

λ
2/p
1

+ b

λ
(3−p)/p
1

)(
c1|Ω|

1
p
− 1

τ

)p−2

M1 + c, ℓ1 :=
a
λ1

+ bcΩ

λ
(1)/p
1

+ c,

ℓ = max{ℓ0, ℓ1} < 1, σ0 = 1− ℓ.

We are now ready to state our main result.
Theorem 3.1. Let (p∗∗)′ ≤ τ ≤ p. Assume that assumptions (A1)–(A4) hold true. Then (1) has at
least one solution u ∈ W 2,p

0 (Ω) with △2
pu ∈ Lτ (Ω).

For the proof of this theorem, we need to establish the following three lemmas.
Lemma 3.2. Suppose that (A1) and (A4) hold. Then A is a contraction on Lτ (Ω) , τ ∈ [1, p/(p−
1)], provided a, b are sufficiently small.

Proof. The Carathéodory conditions ensure that for every measurable function v ∈ Lτ (Ω), the
function f (·, S−1v,△S−1v,−v) is also measurable. Furthermore∥∥f (·, S−1v,△S−1v,−v

)∥∥
τ
=
∥∥f (·, S−1v,△S−1v,−v

)
− f(·, 0, 0, 0)

∥∥
τ

≤ a
∥∥|S−1v|p−1

∥∥
τ
+ b
∥∥|△S−1v|p−1

∥∥
τ
+ c∥v∥τ (6)

But, using the inequalities

∥z∥τ(p−1) ≤ cτ∥z∥, for all z ∈ W 2,p
0 (Ω), (7)

and
∥z∥τ(p−1) ≤ cp∥z∥p, for all z ∈ Lp(Ω), (8)

where cτ and cp are the best constants for the embeddings W 2,p
0 (Ω) ↪→ Lτ(p−1)(Ω) and Lp(Ω) ↪→

Lτ(p−1)(Ω) respectively, we have for v ∈ Lτ (Ω)∥∥|S−1v|p−1
∥∥
τ
≤
∥∥|S−1v|

∥∥p−1

τ(p−1)
≤ cp−1

τ ∥S−1v∥p−1 = cp−1
τ ∥v∥−2

≤ cp−1
τ c3∥v∥τ < ∞

and, similarly ∥∥|△S−1v|p−1
∥∥
τ
≤ cp−1

p c3∥v∥τ < ∞.
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So, from (6) and the above inequalities, A is well defined from Lτ (Ω) to itself.

Furthermore, we can use this last process to obtain

∥Av − Aw∥τ ≤ a
∥∥S−1v − S−1w

∥∥p−1

τ(p−1)
+ b
∥∥△S−1v −△S−1w

∥∥p−1

τ(p−1)

+ c∥v − w∥τ
≤ acp−1

τ M1c3∥v − w∥τ + bcp−1
p M1c3∥v − w∥τ + c∥v − w∥τ

≤
[
(acp−1

τ + bcp−1
p )M1c3 + c

]
∥v − w∥τ

=

[(
a

λ
2/p
1

+
b

λ
(3−p)/p
1

)(
c1|Ω|1/p−1/τ

)p−2
M1 + c

]
∥v − w∥τ .

It follows, from hypothesis (A4), that A is a contraction.

Lemma 3.3. Suppose that (A2) is satisfied. Then the operator B : Lτ (Ω) −→ Lτ (Ω) is
well-defined and completely continuous for

τ = min {p∗∗/α, p/β} . (9)

Proof. It is easily checked that (9) implies (p∗∗)′ < τ ≤ p.

We define three operators

I2 : L
τ (Ω) −→ W−2,p′(Ω), I2(v) = v,

I1 : W
−2,p′(Ω) −→ Lp∗(Ω)× Lp (Ω,Rn) , I1(v) =

(
S−1v,△S−1v

)
,

Φ : Lp∗(Ω)× Lp (Ω;Rn) −→ Lτ (Ω), Φ(u, v) = g(·, u, v).

We observe that

(i) I2 is completely continuous, since Lτ (Ω) ↪→ W−2,p′(Ω) is compact.

(ii) I1 is continuous and bounded, because ∥u∥−2 ≤ c3∥u∥τ .

(iii) Φ is continuous and bounded for τ = min
{

p∗∗

α
, p
β

}
.

Indeed

∥Φ(u, v)∥ττ ≤
∫
Ω

(
3max

{
a0|u|α, b0|v|β, |h|

})τ
dx

≤ 3τ
(
aτ0∥u∥αατ + bτ0∥v∥

β
βτ + ∥h∥ττ

)
≤ c

(
∥u∥αp∗ + ∥v∥βp + ∥h∥ττ

)
.

Since g is a Carathéodory function, by using Lebesgue’s dominated convergence theorem, we
obtain the continuity of Φ.

Thus, B = Φ ◦ I1 ◦ I2 : Lτ (Ω) −→ Lτ (Ω) is a completely continuous operator.
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Lemma 3.4. Suppose that the hypotheses of Lemmas 3.2 and 3.3 are satisfied and, in addition, g
satisfies (A3). Then the set

F = {v ∈ Lτ (Ω) : v = Av + λBv, for some λ ∈]0, 1[}

is bounded in Lτ (Ω).

Proof. First, we will verify that the set of the solutions is bounded in W−2,p′(Ω). Let v ∈ F . By
Lemma 2.4, v ∈ W−2,p′(Ω), and we have

⟨v, S−1v⟩ = ⟨Av, S−1v⟩+ λ⟨Bv, S−1v⟩. (10)

Now, by the properties of the operator S−1, we have ⟨v, S−1v⟩ = ∥v∥p/(p−1)
−2 , and hence, using

(A1) and (A3), we can write

∥v∥p/(p−1)
−1 =

∫
Ω

f
(
x, S−1v,△S−1v,−v

)
S−1v dx

+

∫
Ω

g
(
x, S−1v,△S−1v

)
S−1v dx

≤
∫
Ω

(
a|S−1v|p−1 + b|△S−1v|p−1 + c|v|+ |f(x, 0, 0, 0)|

)
|S−1v| dx

+σ

∫
Ω

|S−1v|p dx

≤a∥S−1v∥pp + b∥△S−1v∥p−1
p ∥S−1v∥p′ + ∥γ0∥p′∥S−1(v)∥p

+c

∫
Ω

|v||S−1v| dx+ σ∥S−1v∥pp

≤

(
a

λ1

+
bcΩ

λ
1/p
1

+
σ

λ1

)
∥S−1v∥p + c∥v∥−2∥S−1v∥+ ∥γ0∥pcΩ

λ
1/p
1

∥S−1v∥

≤

(
a

λ1

+
bcΩ

λ
1/p
1

+ c+
σ

λ1

)
∥v∥p/(p−1)

−2 +
∥γ0∥pcΩ
λ
1/p
1

∥v∥1/(p−1)
−2 ,

where γ0(x) = |f(x, 0, 0, 0)|. Then, from hypothesis (A4),

∥v∥p/(p−1)
−2 ≤ ∥γ0∥pcΩ

λ
1/p
1

∥v∥1/(p−1)
−2 .

Therefore,
∥v∥−2 ≤ K1,

where K1 = ∥γ0∥pcΩ/λ1/p
1 .

Finally, we will prove that ∥v∥τ ≤ K for all v ∈ F and K > 0.
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As ατ ≤ p∗∗ and βτ ≤ p, we get

∥B(v)∥ττ = ∥Φ(S−1v,△S−1v)∥ττ ≤C0

(
∥S−1v∥αατ + ∥△S−1v∥ββτ + ∥h∥ττ

)
≤C̃0

(
∥S−1v∥α + ∥ S−1v∥β + ∥h∥τ

)
=C̃0

(
∥v∥α/(p−1)

−2 + ∥ v∥β/(p−1)
−2 + ∥h∥τ/(p−1)

−2

)
.

Hence, for v ∈ F , we have

∥v∥τ ≤ ∥A(v)∥τ + λ∥B(v)∥τ ≤ l∥v∥τ + γ +K2,

where γ = ∥f(., 0, 0, 0)∥τ . This implies ∥v∥τ ≤ K2 + γ/(1 − l), and the proof of this lemma is
complete.

Proof of Theorem 3.1. It follows at once from Lemmas 3.2-3.4 and Theorem 2.2. □

Finally, we would like to point out that the existence result for the elliptic problem

u ∈ H2 ∩H1
0 (Ω), △2u+ q△u+ α(x)u = f(x, u,∇u,△u),

where f : Ω × R × Rn × R → R is locally Lipschitz continuous, obtained by P.C. Carrião et al.
[22], can be approached with the techniques presented in this paper.
Remark 3.5. It seems to be interesting to study a similar result for the implicit p-Kirchoff type
problem

−M

(∫
Ω

|△u|p dx
)
△2

pu = f(x, u,△u,△2
pu) + g(x, u,△u) in Ω,

u = 0 on Γ,

where M : [0,+∞) → [m0,+∞), m0 > 0 is a continuous function and the same hypotheses of
this paper on f and g.

We plan to address these questions in a future research.
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