

Counting the number of non-isomorphic top generalized local cohomology modules

Liliam Carsava Merighe¹

¹Universidade Estadual de Mato Grosso do Sul Cidade Universitária de Dourados Caixa postal 351, 79804-970, Dourados-MS, Brazil

liliam.mrighe@gmail.com

Abstract. Let (R, \mathfrak{m}) be a commutative Noetherian local ring, \mathfrak{a} be a proper ideal of R and M and N be two finitely generated R-modules. In this paper, we give some results in order to count the number of non-isomorphic top generalized local cohomology modules, namely $\mathrm{H}^{d+n}_{\mathfrak{a}}(M, N)$, where $\dim_R N = n < \infty$ and $\mathrm{pd}_R M = d < \infty$. We prove that this number is equal to $2^{|\operatorname{Att}_R(\mathrm{H}^{d+n}_{\mathfrak{m}}(M,N))|}$, when $\dim_R R = d + n$ and R is Cohen-Macaulay and complete with respect to the \mathfrak{m} -adic topology. **Keywords** – Local cohomology, Attached primes. **MSC2020** – 13D45, 13E10, 13H10

1. Introduction

Throughout (R, \mathfrak{m}) denote a commutative Noetherian local ring, \mathfrak{a} and \mathfrak{b} are proper ideals of R and M and N are two finitely generated R-modules. Assume that $\dim_R R = r$, $\dim_R N = n < \infty$, and $\operatorname{pd}_R M = d < \infty$, where $\operatorname{pd}_R M$ denote the projective dimension of M.

Recall that for an *R*-module *L*, a prime ideal \mathfrak{p} of *R* is said to be an attached prime of *L* if $\mathfrak{p} = \operatorname{Ann}_R(L/K)$ for some submodule *K* of *L*. We denote the set of attached primes of *L* by $\operatorname{Att}_R(L)$. This definition agrees with the usual definition of attached primes if *L* has a secondary representation, see [1].

In this paper, we are interested in the structure of

$$\mathrm{H}^{i}_{\mathfrak{a}}(M,N) := \varinjlim_{n} \mathrm{Ext}^{i}_{R}(M/\mathfrak{a}^{n}M,N),$$

the *i*th generalized local cohomology module with respect to a and R-modules M and N, introduced by Herzog [2]. If M = R, the definition of generalized local cohomol-

Received 7 October 2021, Revised 9 August 2022.

ogy modules reduces to the notion introduced by Grothendieck [3] of local cohomology modules $H^i_{\mathfrak{a}}(N)$.

As we will see in Proposition 2.1, if L is an R-module such that $\dim_R L = n$, $\mathfrak{a} \subseteq \mathfrak{b}$ and $\mathrm{H}^{d+n}_{\mathfrak{a}}(M,L) \neq 0$, then there is an epimorphism $\mathrm{H}^{d+n}_{\mathfrak{b}}(M,L) \to \mathrm{H}^{d+n}_{\mathfrak{a}}(M,L)$. Based on this result one can ask: when is this epimorphism an isomorphism and when is it not? In other words:

Question 1.1. Let $\operatorname{pd}_R M = d < \infty$ and $\dim_R N = n < \infty$. Is it possible to count the number of non-isomorphic top local cohomology modules $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N)$?

The purpose of this paper is to study this question and give a number to this in a particular case. In order to do this, we define the following notation to the sets

$$\operatorname{Assh}(M,N) := \operatorname{Att}_R(\operatorname{H}^{d+n}_{\mathfrak{m}}(M,N))$$

and

$$\operatorname{Assr}(M, N) := \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{m}}(M, N)).$$

Then we prove, on Proposition 2.4, that the number of non-isomorphic top generalized local cohomology modules $H^{d+n}_{\mathfrak{a}}(M, N)$ is less than or equal to $2^{|\operatorname{Assh}(M,N)|}$. It is well-known that when M = R and (R, \mathfrak{m}) is complete with respect to the m-adic topology, the equality holds (it has been proved in [4, Corollary 2.9]). When M is not necessarily equal to R, we show in Corollary 3.7 that the equality holds, when the ring R is also Cohen-Macaulay.

For conventions of notation, basic results, and terminology not given in this paper, the reader can consult [5] and [6].

2. Some Results

Proposition 2.1. Let L be an R-module such that $\dim_R L = n$. Suppose $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, L) \neq 0$ and $\mathfrak{a} \subseteq \mathfrak{b}$. Then there is an epimorphism $\operatorname{H}^{d+n}_{\mathfrak{b}}(M, L) \to \operatorname{H}^{d+n}_{\mathfrak{a}}(M, L)$.

Proof. We may assume that $\mathfrak{a} \neq \mathfrak{b}$ and choose $x \in \mathfrak{b} \setminus \mathfrak{a}$. By [7, Lemma 3.1], there is an exact sequence

$$\mathrm{H}^{d+n}_{\mathfrak{a}+xR}(M,L)\longrightarrow \mathrm{H}^{d+n}_{\mathfrak{a}}(M,L)\longrightarrow \mathrm{H}^{d+n}_{\mathfrak{a}R_x}(M_x,L_x),$$

where L_x is the localization of L at $\{x^i \mid i \ge 0\}$.

Note that $\dim_{R_x}(L_x) < n$ and so $\operatorname{H}^{d+n}_{\mathfrak{a}R_x}(M_x, N_x) = 0$. Thus, there is an epimorphism $\operatorname{H}^{d+n}_{\mathfrak{a}+xR}(M, N) \longrightarrow \operatorname{H}^{d+n}_{\mathfrak{a}}(M, N)$. Now the assertion follows by assuming $\mathfrak{b} = \mathfrak{a} + (x_1, \ldots, x_r)$ and applying the argument for finite steps. \Box

Theorem 2.2 ([8, Theorem 3.3]). $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{d+n}_{\mathfrak{b}}(M, N)$ whenever $\operatorname{Att}_{R}(\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N)) = \operatorname{Att}_{R}(\operatorname{H}^{d+n}_{\mathfrak{b}}(M, N)).$

The following Proposition is analogous to Theorem 2.2 but involving the dimension of R and it is worth mentioning. The proof is similar to the Theorem, so we omit it here.

Proposition 2.3. Assume $\operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}}(M, N)) \subseteq \operatorname{Ass}_R(N)$. In this case, there is an isomophism $\operatorname{H}^r_{\mathfrak{a}}(M, N) \cong \operatorname{H}^r_{\mathfrak{b}}(M, N)$, if $\operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}}(M, N)) = \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{b}}(M, N))$. **Proposition 2.4.** The number of non-isomorphic top generalized local cohomology mod-

ules $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N)$ is less than or equal to $2^{|\operatorname{Assh}(M,N)|}$.

Proof. By Proposition 2.1, $\operatorname{Att}_R(H^{n+d}_{\mathfrak{a}}(M, N)) \subseteq \operatorname{Assh}(M, N)$. Then the result follows from the Theorem 2.2.

Our goal is to know: when does the equality hold?

To what follows, remember: $cd(\mathfrak{a}, M, N) = \sup\{i \mid H^i_\mathfrak{a}(M, N) \neq 0\}$. **Corollary 2.5.** Assume |Assh(M, N)| = 1. For any ideal \mathfrak{a} of R, if $cd(\mathfrak{a}, M, N) = d + n$, then $H^{d+n}_\mathfrak{a}(M, N) \cong H^{d+n}_\mathfrak{m}(M, N)$. In particular $H^{d+n}_\mathfrak{a}(M, N)$ is an Artinian R-module.

Proof. Note that $H^{d+n}_{\mathfrak{a}}(M, N) \neq 0$, since $cd(\mathfrak{a}, M, N) = d + n$. Moreover, $H^{d+n}_{\mathfrak{m}}(M, N) \neq 0$, since |Assh(M, N)| = 1 (if $H^{d+n}_{\mathfrak{m}}(M, N) = 0$, then $Assh(M, N) = \emptyset$). As the number of non-isomorphic top generalized local cohomology modules $H^{d+n}_{\mathfrak{a}}(M, N)$ is not greater than 1, we have the result.

The next result will be a key point of the main and last result of this section. **Proposition 2.6.** Assume that $n \ge 1$ and $T \subset Assh(M, N)$ is a non-empty set. Set $Assh(M, N) \setminus T = \{q_1, \dots, q_r\}$. Consider the following statements:

- (i) there exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R(\operatorname{H}^{d+n}_{\mathfrak{a}}(M,N)) = T$;
- (ii) for each $1 \leq i \leq r$, there exists $Q_i \in \text{Supp}_R(N)$ such that $\dim_R(R/Q_i) = 1$ with $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \not\subseteq Q_i$ and $\mathfrak{q}_i \subseteq Q_i$.

Then (i) implies (ii).

Proof. As $T = \operatorname{Att}_R((\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N)) \subseteq \operatorname{Att}_R((\operatorname{H}^n_{\mathfrak{a}}(N)))$, by [8, Proposition 2.2 (ii)], then $\operatorname{H}^n_{\mathfrak{a}}(R/\mathfrak{p}) \neq 0$, for all $\mathfrak{p} \in T$. By the Lichtenbaum-Hartshorne Theorem ([3, 8.2.1]), this is equivalent to say that $\mathfrak{a} + \mathfrak{p}$ is a m-primary ideal, for all $\mathfrak{p} \in T$.

On the other hand, for each $1 \leq i \leq r$, $q_i \notin T$, which is equivalent to say that $\mathfrak{a} + q_i$ is not a m-primary ideal (again by the Lichtenbaum-Hartshorne Theorem, [3, 8.2.1]). Then, there exists a prime ideal $Q_i \in \text{Supp}_R(N)$ such that $\dim_R(R/Q_i) = 1$ and $\mathfrak{a} + q_i \subseteq Q_i$. In this case, we have $\bigcap_{\mathfrak{p} \in T} \mathfrak{p} \not\subseteq Q_i$.

Now, consider the following sentence:

(i') There exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_{R}(\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N)) \subseteq T$.

In the previous hypothesis, we can show (ii) \Rightarrow (i'), where $\mathfrak{a} = \bigcap_{i=1}^{r} Q_i$, as follows.

Proof. Set $\mathfrak{a} = \bigcap_{i=1}^{r} Q_i$. For each $1 \leq i \leq r$, $\mathfrak{a} + \mathfrak{q}_i \subseteq Q_i$ is equivalent to say that $\mathfrak{a} + \mathfrak{q}_i$ is not a m-primary ideal, hence by the Lichtenbaum-Hartshorne Theorem ([3, 8.2.1]), $H^n_\mathfrak{a}(R/Q_i) = 0$. Then $\operatorname{Att}_R(\operatorname{H}^n_\mathfrak{a}(N)) \subseteq T$. Therefore, $\operatorname{Att}_R(\operatorname{H}^{d+n}_\mathfrak{a}(M,N)) \subseteq T$. \Box

Corollary 2.7. If $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N) \neq 0$, then there is an ideal $\mathfrak{b} \subseteq R$ such that $\operatorname{H}^{d+n}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{d+n}_{\mathfrak{b}}(M, N)$ and $\operatorname{dim}_{R} R/\mathfrak{b} \leq 1$.

Proof. If $\operatorname{Att}_R(\operatorname{H}^{d+n}_{\mathfrak{a}}(M,N)) = \operatorname{Assh}(M,N)$, then, by Theorem 2.2, $\operatorname{H}^{d+n}_{\mathfrak{a}}(M,N) \cong \operatorname{H}^{d+n}_{\mathfrak{m}}(M,N)$.

Otherwise, $d + n \ge 1$ and $\operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N))$ is a proper subset of $\operatorname{Assh}(M, N)$. Set $\operatorname{Assh}(M, N) \setminus \operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N)) := \{\mathfrak{q}_1, \ldots, \mathfrak{q}_r\}$. By the proof of Proposition 2.6, for each $1 \le i \le r$, there exists $Q_i \in \operatorname{Supp}_R(M)$ with $\dim_R(R/Q_i) = 1$ such that $\operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N)) = \operatorname{Att}_R(\operatorname{H}_{\mathfrak{b}}^{d+n}(M, N))$, where $\mathfrak{b} = \bigcap_{i=1}^r Q_i$. Again, by Theorem 2.2, $\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N) \cong \operatorname{H}_{\mathfrak{b}}^{d+n}(M, N)$. Since $\dim_R R/\mathfrak{m} = 0$ and $\dim_R R/\mathfrak{b} = 1$, we have the result.

3. The Cohen-Macaulay case

Recall that a finitely generated R-module M is a Cohen-Macaulay module if depth $M = \dim_R M$. If R itself is a Cohen-Macaulay module, then it is called a Cohen-Macaulay ring. A maximal Cohen-Macaulay module is a Cohen-Macaulay module M such that $\dim_R M = \dim_R R$. For more information about Cohen-Macaulay rings and modules the reader can see the book of Bruns-Herzog [5].

From now on, we assume that (R, \mathfrak{m}) is a commutative Noetherian Cohen-Macaulay local ring, complete with respect to the m-adic topology, such that $\dim_R R = r$. Let \mathfrak{a} and \mathfrak{b} be ideals of R. We also assume that M and N are two finitely generated Rmodules such that $\mathrm{pd}_R M = d < \infty$ and $\dim_R N = n < \infty$.

Note that $H^r_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module for all *R*-ideal \mathfrak{a} and

 $\operatorname{Att}_{R}(\operatorname{H}^{r}_{\mathfrak{a}}(M,N)) = \left\{ \mathfrak{p} \in \operatorname{Supp}_{R}(N) \cap \operatorname{Ass}_{R}(M) \mid \dim_{R}\left(R/\mathfrak{a} + \mathfrak{p}\right) = 0 \right\},$

by [7, Theorems 3.8 and 3.9], since R is complete with respect to the m-adic topology.

Proposition 3.1. Assume $r \ge 1$ and T is a proper non-empty subset of Assr(M, N). Set $Assr(M, N) \setminus T = \{q_1, \ldots, q_s\}$. The following statements are equivalent:

- (i) There exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R(\operatorname{H}^r_\mathfrak{a}(M, N)) = T$;
- (ii) For each $1 \leq i \leq s$, there exists $Q_i \in \text{Supp}_R(N)$ such that $\dim_R(R/Q_i) = 1$ with $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \not\subseteq Q_i$ and $\mathfrak{q}_i \subseteq Q_i$.

Where $\mathfrak{a} = \bigcap_{i=1}^{s} Q_i$.

Proof. (i) \Rightarrow (ii) Since

$$T = \{ \mathfrak{p} \in \operatorname{Supp}_R(N) \cap \operatorname{Ass}_R(M) \mid \dim_R(R/\mathfrak{a} + \mathfrak{p}) = 0 \} \neq \emptyset,$$

 $\mathfrak{a}+\mathfrak{p}$ is a m-primary ideal, for all $\mathfrak{p} \in T$. On the other hand, by the same argument, $\mathfrak{a}+\mathfrak{q}_i$ is not a m-primary ideal, since $\mathfrak{q}_i \notin T$, for all $1 \leq i \leq s$. Then there exists $Q_i \in \text{Supp}_R(N)$ such that $\dim_R(R/Q_i) = 1$ and $\mathfrak{a} + \mathfrak{q}_i \subseteq Q_i$. Therefore, $\bigcap_{\mathfrak{p} \in T} \mathfrak{p} \nsubseteq Q_i$.

(ii) \Rightarrow (i) Set $\mathfrak{a} = \bigcap_{i=1}^{s} Q_i$. For all $1 \leq i \leq s$, $\mathfrak{a} + \mathfrak{q}_i \subseteq Q_i$, then $\mathfrak{a} + \mathfrak{q}_i$ is not a \mathfrak{m} -primary ideal. Thus, $\operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}}(M, N)) \subseteq T$.

On the other hand, take $\mathfrak{p} \in T \subseteq \operatorname{Assr}(M, N) = \operatorname{Supp}_R(N) \cap \operatorname{Ass}_R(M)$ and let $Q \in \operatorname{Supp}_R(N)$ such that $\mathfrak{a} + \mathfrak{p} \subseteq Q$. Then there exists $i \in \{1, \ldots, s\}$ such that $Q_i \subseteq Q$. Notice that $\mathfrak{p} \not\subseteq Q_i$, since $\bigcap_{\mathfrak{p} \in T} \mathfrak{p} \not\subseteq Q_i$, then $Q_i \neq Q$. Thus, $Q = \mathfrak{m}$. So $\mathfrak{a} + \mathfrak{p}$ is a \mathfrak{m} -primary ideal then $\dim_R(R/\mathfrak{a} + \mathfrak{p}) = 0$. Therefore, $\mathfrak{p} \in \operatorname{Att}_R(\operatorname{H}^r_\mathfrak{a}(M, N))$.

Corollary 3.2. If r = 1, then any subset of Assr(M, N) is equal to $Att_R(H^1_{\mathfrak{a}}(M, N))$, for some ideal \mathfrak{a} of R.

Proof. In the notation of the Proposition 3.1, it is enough to take $Q_i = q_i$, for i = 1, ..., s.

Lemma 3.3. Assume $r \ge 2$. Let \mathfrak{a}_1 , \mathfrak{a}_2 be ideals of R. Then there exists an ideal \mathfrak{b} of R such that $\operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{b}}(M,N)) = \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}_1}(M,N)) \cap \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}_2}(M,N))$.

Proof. Consider $T_1 = \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}_1}(M, N))$ and $T_2 = \operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{a}_2}(M, N))$. Suppose $T_1 \cap T_2$ is a non-empty proper subset of $\operatorname{Assr}(M, N)$. Let $\mathfrak{q} \in \operatorname{Assr}(M, N) \setminus (T_1 \cap T_2) = (\operatorname{Assr}(M, N) \setminus T_1) \cup (\operatorname{Assr}(M, N) \setminus T_2)$. By Proposition 3.1, there exists $Q \in \operatorname{Supp}_R(N)$ such that $\dim_R(R/Q) = 1$ with $\mathfrak{q} \subseteq Q$ and $\bigcap_{\mathfrak{p} \in T_1} \mathfrak{p} \nsubseteq Q$ or $\bigcap_{\mathfrak{p} \in T_2} \mathfrak{p} \nsubseteq Q$. Thus, there exists Q satisfying the above conditions such that $\bigcap_{\mathfrak{p} \in T_1 \cap T_2} \mathfrak{p} \nsubseteq Q$. Therefore, again by Proposition 3.1, there exists an ideal \mathfrak{b} of R such that $\operatorname{Att}_R(\operatorname{H}^r_{\mathfrak{b}}(M, N)) = T_1 \cap T_2$. \Box

Lemma 3.4. Assume $r = d + n \ge 2$. Let T be a non-empty subset of $\operatorname{Assr}(M, N) = \operatorname{Assh}(M, N)$ and $T' = \operatorname{Assh}(M, N) \setminus T = \{\mathfrak{q}\}$. If $\bigcap_{\mathfrak{p}\in T} \mathfrak{p} \nsubseteq \bigcap_{\mathfrak{b}\in\operatorname{Assh}(M,R/\mathfrak{p})} \mathfrak{b}$,

then there exists a prime ideal $Q \in \operatorname{Supp}_R(N)$ such that $\dim_R(R/Q) = 1$ and $\operatorname{Att}_R(\operatorname{H}_Q^{d+n}(M,N)) = T$.

Proof. First note that $\dim_R R/\mathfrak{q} = d + n = r$, since $\mathfrak{q} \in T' \subset \operatorname{Assh}(M, N)$. We prove by induction in j ($0 \leq j \leq r-1$) that there exists a chain of prime ideals $Q_0 \subset Q_1 \subset \cdots \subset Q_j \subset \mathfrak{m}$ such that $Q_0 \in \operatorname{Assh}(M, R/\mathfrak{q})$, $\dim_R(R/Q_j) = r - j$ and $\bigcap_{\mathfrak{p} \in T} \mathfrak{p} \not\subseteq Q_j$.

Now, note that there exists $Q_0 \in \operatorname{Assh}(M, R/\mathfrak{q})$ such that $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \nsubseteq Q_0$, since $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \oiint \bigcap_{\mathfrak{b}\in\operatorname{Assh}(M,R/\mathfrak{q})}\mathfrak{b}$, and $\dim_R(R/Q_0) = \dim_R R/\mathfrak{q} = r$.

Let $0 < j \le r-1$ and suppose we already prove the existence of the chain of prime ideals $Q_0 \subset Q_1 \subset \cdots \subset Q_{j-1}$ such that $Q_0 \in \operatorname{Assh}(M, R/\mathfrak{q}), \dim_R(R/Q_j) = r - (j-1)$ and $\bigcap_{\mathfrak{p} \in T} \mathfrak{p} \nsubseteq Q_{j-1}$. Note that $r - j + 1 \ge 2$, since $r - j - 1 \ge 0$. Thus, the set

$$V = \{ \mathfrak{q} \in \operatorname{Supp}_R(N) \mid Q_{j-1} \subset \mathfrak{q} \subset \mathfrak{q}' \subset \mathfrak{m}, \ \dim_R R/\mathfrak{q} = r - j,$$
$$\mathfrak{q}' \in \operatorname{Spec}(R), \ \dim_R R/\mathfrak{q}' = r - j - 1 \}$$

is non-empty and therefore, by Ratliff's weak existence Theorem ([6, Theorem 31.2]), is infinite.

Since $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \nsubseteq Q_{j-1}$, we have that $Q_{j-1} \subset Q_{j-1} + \bigcap_{\mathfrak{p}\in T}\mathfrak{p}$. If $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \subseteq \mathfrak{q}$ for $\mathfrak{q} \in V$, then \mathfrak{q} is a minimal prime ideal of $Q_{j-1} + \bigcap_{\mathfrak{p}\in T}\mathfrak{p}$. Thus, there is $Q_j \in V$ such that $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \nsubseteq Q_j$, since V is an infinite set and the amount of minimal primes of $Q_{j-1} + \bigcap_{\mathfrak{p}\in T}\mathfrak{p}$ is finite. Therefore, taking $Q := Q_{r-1}$, by Proposition 3.1, the result is as follows.

Corollary 3.5. Assume $r = d + n \ge 2$. If $T \subseteq Assh(M, N)$ is non-empty and $T' = Assh(M, N) \setminus T = \{q\}$, then there is an ideal \mathfrak{a} of R such that $Att_R(H^{d+n}_{\mathfrak{a}}(M, N)) = T$.

Proof. Define, for any prime ideal $\mathfrak{b} \in \operatorname{Spec}(R)$,

$$ht_N(\mathfrak{b}) = \inf\{s \mid P_0 \subseteq P_1 \subseteq \cdots \subseteq P_s \subseteq \mathfrak{b}, \text{ with } P_i \in \text{Supp}_R(N)\}.$$

Note that $\operatorname{ht}_N(\mathfrak{q}) = 0$, since $\mathfrak{q} \in \operatorname{Ass}_R(N) \subseteq \operatorname{Supp}_R(N)$. Thus $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \not\subseteq \mathfrak{q} \subseteq \bigcap_{\mathfrak{b}\in\operatorname{Assh}(M,R/\mathfrak{p})}\mathfrak{b}$. Therefore, by Lemma 3.4, the result follows. \Box

Now we are able to show the main result of this section.

Theorem 3.6. Assume r = d + n. If $T \subseteq Assh(M, N)$, then there exists an ideal \mathfrak{a} of R such that $T = Att_R(H^{d+n}_{\mathfrak{a}}(M, N))$.

Proof. By Corollary 3.2, we may assume $r \ge 2$ and T is a non-empty proper subset of Assh(M, N). Let $T = {\mathfrak{p}_1, \ldots, \mathfrak{p}_t}$ and $Assh(M, N) \setminus T = {\mathfrak{p}_{t+1}, \ldots, \mathfrak{p}_{t+s}}$. We use induction over s. For s = 1, the result holds by Corollary 3.5.

Suppose that s > 1 and the result holds for the case s - 1. Consider $T_1 = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_t, \mathfrak{p}_{t+1}\}$ and $T_2 = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_t, \mathfrak{p}_{t+2}\}$. By induction, there exists ideals \mathfrak{a}_1 and \mathfrak{a}_2 of R such that $T_1 = \operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}_1}^{d+n}(M, N))$ and $T_2 = \operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}_2}^{d+n}(M, N))$. Therefore, by Lemma 3.3, there exists an ideal \mathfrak{a} of R such that $T = T_1 \cap T_2 = \operatorname{Att}_R(\operatorname{H}_{\mathfrak{a}}^{d+n}(M, N))$. \Box

As an immediate consequence of Theorem 3.6, we have our main result, which counts the number of non-isomorphic top generalized local cohomology modules.

Corollary 3.7. The number of non-isomorphic top local cohomology modules $H^{d+n}_{\mathfrak{a}}(M, N)$ is equal to $2^{|\operatorname{Assh}(M,N)|}$, when r = d + n.

4. Acknowledgments

The author would like to thank the referee for the careful reading and for his/her constructive comments and suggestions, which have improved the quality of the paper. Also, the athor woulde like to thank professor Victor Hugo Jorge Perez (ICMC-USP) for the guidance during the PhD.

5. References

References

- [1] Macdonald IG. Secondary representation of modules over a commutative ring. In: Symposia Mathematica. vol. 11; 1973. p. 23-43.
- [2] Herzog J. Komplexe, Auflösungen und Dualität in der lokalen Algebra; 1974.
- [3] Brodmann MP, Sharp RY. Local cohomology: an algebraic introduction with geometric applications. vol. 136. Cambridge university press; 2012.
- [4] Dibaei MT, Jafari R. Top local cohomology modules with specified attached primes. In: Algebra Colloquium. vol. 15. World Scientific; 2008. p. 341-4.
- [5] Bruns W, Herzog HJ. Cohen-macaulay rings. 39. Cambridge university press; 1998.
- [6] Matsumura H. Commutative ring theory. vol. 8. Cambridge university press; 1989.
- [7] Divaani-Aazar K, Hajikarimi A. Generalized local cohomology modules and homological Gorenstein dimensions. Communications in Algebra. 2011;39(6):2051-67.
- [8] Gu Y, Chu L. Attached primes of the top generalized local cohomology modules. Bulletin of the Australian Mathematical Society. 2009;79(1):59-67.