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Abstract. This article explores a modern counterpart to the classical Jensen integral
inequality, which provides an upper bound for convex functions evaluated at an integral.
We extend this result to more general settings involving sums and products of integrals of
multiple functions. Full details of the proofs are provided, and some examples illustrate

the theory.
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1. Introduction

The concept of convexity lies at the heart of optimization theory, the study of inequalities,
and the analysis of functional properties. To introduce its role in this article, we formally define the
concept below for a class of non-negative functions defined on the half-line [0, +00). A function
¢ : [0,+00) — [0,400) is said to be convex if and only if, for any z,y > 0 and A € [0, 1], the
following inequality holds:

oAz + (1= Ny) < dp(x) + (1= N)p(y).

See [1L 2, 3]. Note that this definition can be extended to any intervals, say [a, b] with a < b such
thata € RU {—oo} and b € R U {+o0}. For the purposes of this article, however, we will focus
only on [0, +00). If ¢ is twice differentiable, a classical and convenient characterization of its

convexity is that its second derivative satisfies
"(t) 2 0

for any ¢ > 0. This condition guarantees that the first derivative ¢’ is non-decreasing, which further

illustrates the nature of convexity. If we also assume that ¢(0) = 0, then the convexity of ¢ implies
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that, for any z > 0 and A € [0, 1], we have p(Az) < Ap(z). See again [1} 2 [3]. The concept of
convexity holds profound significance across many areas of mathematics and its applications. See,
for example, [4, 15,16, 7,18, 9, [10]. In particular, the interplay between the convexity of a function
and how it behaves when combined with integrals of other functions is a central theme in analysis.
The best-known result in this area is the classical Jensen integral inequality, a simplified version of
which is stated below. Let f : [0,1] — [0, +00) be a function. Let ¢ : [0, +00) — [0, +00) be a
convex function. Then the following inequality holds:

o([ 1) < [ ot

provided that the last integral converges.

This article focuses on a modern counterpart of the Jensen inequality, which was first
introduced in [11} [12]]. It thus provides an upper bound for a convex function evaluated at the
integral of a bounded function. This upper bound is expressed in terms of an integral involving
the derivative of the convex function. Consequently, it serves as a complementary result to the
classical Jensen integral inequality, providing an additional tool for estimating such expressions.
The precise statement is given formally below. Let f : [0,1] — [0, +o0) be a function such that,
forany ¢t € [0,1], f(¢) < 1. Lety : [0,1] — [0, +00) be a twice differentiable and convex function
such that ¢(0) = 0. Then the following inequality holds:

. ( /O 1f(t>dt) < /0 ' F(t)e!(t)d, (1)

provided that the last integral converges.

In this article, we present two generalizations of this result, each of which extends the scope

to multiple functions. The first involves sums of integrals of functions and focuses on a quantity

. (Z A ﬁ(t)dt) ,

where n € N\{0} and fi, ..., f, are n functions that satisfy certain conditions regarding regularity

of the following form:

and boundedness, which will be defined precisely later. We establish an upper bound in line with
the approach in [11, [12]. The case n = 1 reduces to the inequality in Equation (1)), whereas
the other case yields to new results. The second generalization involves products of integrals of

functions and focuses on a quantity of the following form:

@ (lj /01 fi(t)dt> .

We provide an upper bound in line with that in [11,|12]. The case n = 1 reduces to the inequality

in Equation (I)), whereas the other case yields to new results. Full details of the proofs are
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provided, along with some illustrative examples for each generalization. These results improve
our understanding of how convexity operates within the context of integral composition, as well as
expanding the range of tools available for analyzing such expressions.

The rest of the article is as follows: Section [2] presents our two generalizations in the form

of two theorems. Section |3|provides a conclusion.

2. Two theorems

2.1. First theorem

Our first theorem is presented below, followed by the detailed proof.

Theorem 2.1. Let n € N\{0}, fi1,..., fn : [0,1] — [0,+00) be n functions such that, for any
i=1,...,nandt € [0, 1], we have

fi(t) < 1.

Let ¢ : [0,400) — [0,+00) be a twice differentiable and convex function such that ©(0) = 0.
Then the following inequality holds:

’ (Z A ﬁ-(t)dt) <[ (Z f (%)) o)t

provided that the last integral converges.

Proof of Theorem 2.1} Using the differentiation rules for compositions and products of several
functions, and noting that, forany i = 1,...,nand ¢t € [0,1], 0 < f;(t) < 1, and that /(¢) is
non-decreasing because ¢ is twice differentiable and convex, for any = € [0, 1], we obtain

<90 (i; /Ox fi(t)dt>>/ = (Zj; /Oz j;(t)dt)lgo’ (i /Ox fi(t)dt)
- g;&m) ¢’ (é /Ox fi(t)dt>

if&x)) @' (2 /0 ' dt)

= i}ﬁ(@) ¢’ (nx).

Using the integration rules for compositions, ¢(0) = 0, the previous result, and the change of
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variables u = nx, we get
nooa1 1 no g ! no .0
(30 e = [ (30 [ stwar) ) oo (32 [ s
i=1 0 i=1 70 i=1 70
1 n T !
- [ (¢ (Z / ﬁ(t)dt)) 4 + (0)
0 1 /0
1 n T !
[ (X [ st ) as
0 =1 /0
1 n
< [ (X @) tna) as
0 \i=1
1" (& u ,
= E/o (; Ji (ﬁ)) @' (u)du
Standardizing the notation, this can also be written as follows:
( /f, dt) /(Zf()) )dt.
This concludes the proof of Theorem U

We highlight some particular examples of this theorem below.

e If we set n = 1, then we have

o 1 i) < [ e

This is the original inequality in [[11}12].
e If we set n = 2, then we have

([ some [ s 3 (5 () o5()) o

To illustrate this inequality, we can consider p(t) = t, t > 0, with a > 1, which satisfies

the required assumption. We therefore have

(/01 fit)dt + /01 fz(t)dt)a < %/02 (f1 (%) + f (%)) tetdt.

e If we set n = 3, then we have

(/ St dt+/fz dt+/ falt) )
<[ (0(5)+n(5) <5 (5)) som

®
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As an example, considering p(t) = t, t > 0, with a > 1, we have

([soms f s [ )
(00 4(0)en()

2.2. Second theorem

Our second theorem is presented below, followed by the detailed proof.

Theorem 2.2. Let n € N\{0}, fi1,..., fn : [0,1] — [0,+00) be n functions such that, for any
i=1,...,nandt € [0, 1], we have

fi(t) < 1.

Let ¢ : [0,1] — [0,400) be a twice differentiable and convex function such that p(0) = 0. Then
the following inequality holds:

(H/ filt dt) / (Zf t”") )dt,
provided that the last integral converges.
Proof of Theorem [2.2] Using the differentiation rules for compositions and products of several

functions, and noting that, forany ¢ = 1,...,nand ¢t € [0,1], 0 < f;(t) < 1, and that ¢/(t) is

non-decreasing because ¢ is twice differentiable and convex, for any = € [0, 1], we obtain

(s@ (lj /Ox fi(t)dt>>/
(11 ncomt) o (T 00

(S [T s || o (1T 00

i#j

VAN
—=
o\
QL
Py
hG\
&/\
=]
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Z fi(x)

- ij(x)x”_1> ¢ (z").
j=1
Using the integration rules for compositions, ¢(0) = 0, the previous result, and the change of
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variables u = z", we get

’ (H [ ﬁ(t)dt) -/ (so (H A fi(t)dt))dw e (H A fi(t)dt)
- [ (90 (H | fi(t)dt>>/dx +9(0)

L)

<[ (Z fj(:v)x“> J (&) do

-1 (Z fj<u1/">> )

Standardizing the notation, this can also be written as follows:

(I o)< [ (gpnen) s

This ends the proof of Theorem 2.2

We highlight some particular examples of this theorem below.

e If we set n = 1, then we have

o([ nwr) < [ nr

This is the original inequality in [[11} [12]].

o If we set n = 2, then we have

(/ A / Rt < / (F(VD + B(VD) ¢ (Dt

As an example, considering p(t) = t*, t € [0, 1], with & > 1, we have

(/01 fl(t)dt/ol f2(t)dt)a < %/01 (fl(\/i) + f2(\/g>> g

e If we set n = 3, then we have

([ s 0 )

g/ (f1(t1/3> + £, (t1/3) + f4 <t1/3)) o (t)dt.

®
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As an example, considering p(t) = t*, t € [0, 1], with > 1, we have

(f s [ s | 0]

< 2[R+ 2 + 50

0

3. Conclusion

Based on the results presented in [11, [12]], we have improved our understanding of the
relationship between convexity and integral operations by proposing new generalizations. More
precisely, our generalizations extend classical inequalities to settings involving sums and products
of integrals of multiple functions, thereby opening up avenues for further analysis and application
research. Future work could involve investigating tighter bounds or extending these ideas to
broader classes of functions, measures or domains. Such developments could have implications for

fields such as probability theory, optimization, and functional inequalities in mathematical physics.
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