Jacobsthal-Mulatu Numbers

Authors

DOI:

https://doi.org/10.14244/lajm.v4i1.39

Keywords:

Jacobsthal sequence, Jacobsthal-Lucas sequence, Mulatu sequence, generating functions

Abstract

The aim of this study is to find a sequence of Jacobsthal-type numbers, which we will denote by {JMn}n≥0 and name as the sequence of Jacobsthal-Mulatu, such that each term of the Jacobsthal-Lucas sequence, denoted by {jn}n≥0, is an average term between JMn and Jn, where {Jn}n≥0 is the classical Jacobsthal sequence. We investigated some key characteristics of the sequence of Jacobsthal-Mulatu. In this study, we present some interesting properties of these sequences of numbers explored in connection with the sequences {Jn}n≥0 and {jn}n≥0.

References

[1] Sloane NJA. The on-line encyclopedia of integer sequences. The OEIS Foundation Inc.; 2024. Available from: http://oeis.org.

[2] Aydın FT. On generalizations of the Jacobsthal sequence. Notes on number theory and discrete mathematics. 2018;24(1):120-35. DOI: https://doi.org/10.7546/nntdm.2018.24.1.120-135

[3] Koshy T. Fibonacci and Lucas Numbers with Applications. vol. 2. John Wiley & Sons; 2019. DOI: https://doi.org/10.1002/9781118742297

[4] Vajda S. Fibonacci and Lucas numbers, and the golden section: theory and applications. Courier Corporation; 2008.

[5] Lemma M. The Mulatu Numbers. Advances and Applications in Mathematical Sciences. 2011;10(4):431-40.

[6] Lemma M, Lambright J. Our brief Journey with some properties and patterns of the Mulatu Numbers. GPH-International Journal of Mathematics. 2021;4(01):23-9.

[7] Lemma M, Muche T, Atena A, Lambright J, Dolo S. The Mulatu Numbers, The Newly Celebrated Numbers of Pure Mathematics. GPH-International Journal of Mathematics. 2021;4(11):12-8.

[8] Prabowo A. On generalization of Fibonacci, Lucas and Mulatu numbers. International Journal of Quantitative Research and Modeling. 2020;1(3):112-22. DOI: https://doi.org/10.46336/ijqrm.v1i3.65

[9] Horadam AF. Jacobsthal representation numbers. The Fibonacci Quarterly. 1996;34(1):40-54. DOI: https://doi.org/10.1080/00150517.1996.12429096

[10] Horadam AF. A generalized Fibonacci sequence. The American Mathematical Monthly. 1961;68(5):455-9. DOI: https://doi.org/10.1080/00029890.1961.11989696

[11] Horadam AF. Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly. 1965;3(3):161-76. DOI: https://doi.org/10.1080/00150517.1965.12431416

[12] Horadam AF. Generating functions for powers of a certain generalised sequence of numbers. Duke Mathematical Journal. 1965;32(3):437-46. DOI: https://doi.org/10.1215/S0012-7094-65-03244-8

[13] Cerda G. Matrix methods in Horadam sequences. Bolet´ ıns de Matem´ aticas. 2012;19(2):97-106.

[14] Catarino P, Vasco P, Campos H, Aires AP, Borges A. New families of Jacobsthal and Jacobsthal-Lucas numbers. Algebra and Discrete Mathematics. 2015;20(1).

[15] Dasdemir A. Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts. Acta Mathematica Universitatis Comenianae. 2019;88(1):142-56.

[16] Horadam AF. Jacobsthal and Pell curves. The Fibonacci Quarterly. 1988;26(1):77-83. DOI: https://doi.org/10.1080/00150517.1988.12429664

[17] Soykan Y. Generalized Horadam-Leonardo numbers and polynomials. Asian J Adv Res Rep. 2023;17(8):128-69. DOI: https://doi.org/10.9734/ajarr/2023/v17i8511

Downloads

Published

08/20/2025

How to Cite

[1]
Élis Gardel da Costa Mesquita et al. 2025. Jacobsthal-Mulatu Numbers. Latin American Journal of Mathematics. 4, 1 (Aug. 2025), 23–45. DOI:https://doi.org/10.14244/lajm.v4i1.39.

Issue

Section

Articles