Counting the number of non-isomorphic top generalized local cohomology modules

Authors

  • Liliam Carsava Merighe Universidade Estadual de Mato Grosso do Sul

DOI:

https://doi.org/10.14244/lajm.v1i01.4

Keywords:

Local Cohomology, Attached primes

Abstract

Let (R, m) be a commutative Noetherian local ring, a be a proper ideal of R and M and N be two finitely generated R-modules. In this paper, we give some results in order to count the number of non-isomorphic top generalized local cohomology modules, namely H_a^{d+n}(M,N), where dim N = n < \infty and pdim M = d < \infty. We prove that this number is equal to 2^{|Att_R(H_{m}^{d+n}(M,N))|}, when dim R=d+n and R is Cohen-Macaulay and complete with respect to the m-adic topology.

References

M. P. Brodmann and R. Y. Sharp, Local cohomology - an algebraic introduction with geometric applications, Cambridge University Press, 1998.

M. T. Dibaei and R. Jafari, Top local cohomology modules with specified attached primes, Algebra Colloq., 2008, 341-344.

K. Divaani-Aazar and A. Hajikarimi, Generalized Local Cohomology Modules and Homological Gorenstein Dimensions, Comm. Algebra, 2011, 2051-2067.

Y. Gu and L. Chu, Attached primes of the top generalized local cohomology modules, Bull. Aust. Math. Soc., 2009, 59-67.

J. Herzog, Komplexe Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg,1970.

I. G. MacDonald, Secondary representations of modules over a commutative ring, Symposia Mat., 1973, 23-43.

H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.

Downloads

Published

12/16/2022

How to Cite

[1]
Carsava Merighe, L. 2022. Counting the number of non-isomorphic top generalized local cohomology modules. Latin American Journal of Mathematics. 1, 01 (Dec. 2022), 1–7. DOI:https://doi.org/10.14244/lajm.v1i01.4.

Issue

Section

Articles