Um convite à teoria algébrica de formas quadráticas e de formas hermitianas

Authors

  • Kaique Santos IME-USP
  • Hugo Luiz Mariano

DOI:

https://doi.org/10.14244/lajm.v1i01.9

Keywords:

quadratic forms, Witt ring, algebras with involution, hermitian forms

Abstract

The purpose of this work is twofold: to provide an introduction for readers unfamiliar with the algebraic theory of forms quadratics over fields (ATQF) and, subsequently, with the referent constructed in the ATQF, to introduce the algebraic theory of hermitian forms with coefficients in associative algebras equipped with an involution (ATHF).

References

Lam T. Y. Introduction to quadratic forms over fields. vol. 67 of Graduate Studies in Mathematics. 1st ed. American Mathematical Society; 2005.

Santos D. F. Elementos da teoria algébrica de formas quadráticas e de seus aneis graduados; 2015.

Roberto K. M. A. Multi-anéis e a Câmara Secreta: relações funtoriais entre teorias abstratas de Formas Quadráticas; 2019.

Pfister A. Multiplikative Quadratische Formen. Archiv der Mathematik. 1965;16(1):363-70.

Milnor J. Algebraic K-theory and quadratic forms. Inventiones Mathematicae. 1970;9(4):318-44.

Lam T. Y. Orderings, valuations, and quadratic forms. vol. 52 of Regional Conference Series in Mathematics. 1st ed. American Mathematical Society; 1983.

Mariano H.L., Ribeiro H. R.O. , Roberto K. M. A. Uma jornada pelas teorias algébricas de formas quadráticas. 1st ed. Livraria da Física-LF; 2021.

Witt E. Theorie der quadratischen Formen in beliebigen Körpern. Journal für die reine und angewandte Mathematik. 1937;176(1):31-44.

Lam T. Y. Ten Lectures on Quadratic Forms over Fields. Queen’s Papers in Pure and Applied Mathematics. 1977;46(1):1-102.

Knus M. A. Quadratic and Hermitian forms over rings. vol. 294 of Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics. 1st ed. Springer-Verlag; 1991.

Scharlau W. Quadratic and Hermitian forms. vol. 270 of Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics. 1st ed. Springer-Verlag; 1985.

Astier V., Unger T. Signatures of hermitian forms and "prime ideals" of Witt groups. Advances in Mathematics. 2015;285(1):497-514.

Bayer-Fluckiger E, Moldovan D. A. Sesquilinear forms over rings with involution. Journal of Pure and Applied Algebra. 2014;218(1):417-23.

Astier V, Unger T. Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher. Journal of Algebra. 2018;508(1):339-63.

Astier V, Unger T. Signatures of hermitian forms and the Knebusch trace formula. Advances in Mathematics. 2014;358(1):925-47.

Astier V, Unger T. Signatures of hermitian forms and applications (preprint version). Oberwolfach Reports. 2013;31(1):1-3.

Astier V, Unger T. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements in Mathematical Sciences. 2018;28(1):16-26.

Astier V, Unger T. Positive cones on algebras with involution. Advances in Mathematics. 2020;361(1):106954.

Astier V, Unger T. Positive Cones and Gauges on Algebras With Involution. International Mathematics Research Notices. 2022;2022(10):7259-303.

Published

12/20/2022

How to Cite

[1]
Santos, K. and Luiz Mariano, H. 2022. Um convite à teoria algébrica de formas quadráticas e de formas hermitianas. Latin American Journal of Mathematics. 1, 01 (Dec. 2022), 77–102. DOI:https://doi.org/10.14244/lajm.v1i01.9.

Issue

Section

Articles