A survey on relative Lipschitz saturation of algebras and its relation with radicial algebras
DOI:
https://doi.org/10.14244/lajm.v3i1.31Keywords:
Lipschitz saturation, Commutative AlgebraAbstract
In this work, we introduce Lipman’s work on relative Lipschitz saturation, along with its key categorical and algebraic properties, and demonstrate how Lipman proved that such a structure always gives rise to a radicial algebra.
References
A. Altman and S. Kleiman, A term of commutative algebra, Cambridge, USA, 2021.
N. Bourbaki, Elements of mathematics - commutative algebra, Hermann, 1972.
T. da Silva and M. Ribeiro, Universally injective and integral contractions on relative Lipschitz saturation of algebras, Journal of Algebra, Vol. 662, 902-922 (2024). DOI: https://doi.org/10.1016/j.jalgebra.2024.08.024
T. Gaffney, Bi-Lipschitz equivalence, integral closure and invariants, Real and complex singularities, London Math. Soc. Lecture Note Ser., 380, Cambridge Univ. Press, Cambridge (2010), 125–137. DOI: https://doi.org/10.1017/CBO9780511731983.010
T. Gaffney, The genericity of the infinitesimal Lipschitz condition for hypersurfaces, Journal of Singularities, (10), 108-123 (2014). DOI: https://doi.org/10.5427/jsing.2014.10g
A. Grothendieck and J. Dieudonné, El´éments de géométrie algébrique, Springer-Verlag, Berlim, 1971.
M. Lejeune and B. Teissier, Clˆôture int´égrale des id´éaux et ´équisingularit´é, Ann. Fac. Toulouse Math. (6), 17, no.4, 781-859 (2008). DOI: https://doi.org/10.5802/afst.1203
J. Lipman, Relative Lipschitz saturation, American Journal of Mathematics, Vol. 97 (3), 791-813 (1975). DOI: https://doi.org/10.2307/2373777
F. Pham and B. Teissier, Fractions Lipschitziennes d’une alg`ébre analytique complexe et saturation de Zariski (June 1969). 42 pages. Ce travail est la base de l’expos´é de Frédéric Pham au Congrès International des Mathématiciens, Nice 1970.
O. Zariski, Studies in equisingularity I: Equivalent singularities of plane algebroid curves, American Journal of Mathematics, Vol. 87, No. 2, pp. 507-536 (1965). DOI: https://doi.org/10.2307/2373019
O. Zariski, Studies in equisingularity II: Equisingularity in codimension 1 (and characteristic zero), American Journal of Mathematics, Vol. 87, No. 4, pp. 972-1006 (1965). DOI: https://doi.org/10.2307/2373257
O. Zariski, Studies in equisingularity III: Saturation of local rings and equisingularity, American Journal of Mathematics, vol. 90, No. 3, pp. 961-1023 (1968). DOI: https://doi.org/10.2307/2373492
O. Zariski, General theory of saturation and of saturated local rings I: Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero), American Journal of Mathematics, Vol. 93, No. 3, pp. 573-648 (1971). DOI: https://doi.org/10.2307/2373462
O. Zariski, General theory of saturation and of saturated local rings II: Saturared local rings of dimension 1, American Journal of Mathematics, Vol. 93, No. 4, pp. 872-964 (1971). DOI: https://doi.org/10.2307/2373741
O. Zariski, General theory of saturation and of saturated local rings III: Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces, American Journal of Mathematics, Vol. 97, No. 2, pp. 415-502 (1975). DOI: https://doi.org/10.2307/2373720
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thiago Filipe da Silva, Guilherme Schultz Netto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors may enter into separate contractual agreements for the non-exclusive distribution of the journal's published version of the work (for example, posting it in an institutional repository or publishing it in a book), with an acknowledgment of its initial publication in this journal.