A survey on relative Lipschitz saturation of algebras and its relation with radicial algebras
DOI:
https://doi.org/10.14244/lajm.v3i1.31Palabras clave:
Lipschitz saturation, Commutative AlgebraResumen
In this work, we introduce Lipman’s work on relative Lipschitz saturation, along with its key categorical and algebraic properties, and demonstrate how Lipman proved that such a structure always gives rise to a radicial algebra.
Citas
A. Altman and S. Kleiman, A term of commutative algebra, Cambridge, USA, 2021.
N. Bourbaki, Elements of mathematics - commutative algebra, Hermann, 1972.
T. da Silva and M. Ribeiro, Universally injective and integral contractions on relative Lipschitz saturation of algebras, Journal of Algebra, Vol. 662, 902-922 (2024). DOI: https://doi.org/10.1016/j.jalgebra.2024.08.024
T. Gaffney, Bi-Lipschitz equivalence, integral closure and invariants, Real and complex singularities, London Math. Soc. Lecture Note Ser., 380, Cambridge Univ. Press, Cambridge (2010), 125–137. DOI: https://doi.org/10.1017/CBO9780511731983.010
T. Gaffney, The genericity of the infinitesimal Lipschitz condition for hypersurfaces, Journal of Singularities, (10), 108-123 (2014). DOI: https://doi.org/10.5427/jsing.2014.10g
A. Grothendieck and J. Dieudonné, El´éments de géométrie algébrique, Springer-Verlag, Berlim, 1971.
M. Lejeune and B. Teissier, Clˆôture int´égrale des id´éaux et ´équisingularit´é, Ann. Fac. Toulouse Math. (6), 17, no.4, 781-859 (2008). DOI: https://doi.org/10.5802/afst.1203
J. Lipman, Relative Lipschitz saturation, American Journal of Mathematics, Vol. 97 (3), 791-813 (1975). DOI: https://doi.org/10.2307/2373777
F. Pham and B. Teissier, Fractions Lipschitziennes d’une alg`ébre analytique complexe et saturation de Zariski (June 1969). 42 pages. Ce travail est la base de l’expos´é de Frédéric Pham au Congrès International des Mathématiciens, Nice 1970.
O. Zariski, Studies in equisingularity I: Equivalent singularities of plane algebroid curves, American Journal of Mathematics, Vol. 87, No. 2, pp. 507-536 (1965). DOI: https://doi.org/10.2307/2373019
O. Zariski, Studies in equisingularity II: Equisingularity in codimension 1 (and characteristic zero), American Journal of Mathematics, Vol. 87, No. 4, pp. 972-1006 (1965). DOI: https://doi.org/10.2307/2373257
O. Zariski, Studies in equisingularity III: Saturation of local rings and equisingularity, American Journal of Mathematics, vol. 90, No. 3, pp. 961-1023 (1968). DOI: https://doi.org/10.2307/2373492
O. Zariski, General theory of saturation and of saturated local rings I: Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero), American Journal of Mathematics, Vol. 93, No. 3, pp. 573-648 (1971). DOI: https://doi.org/10.2307/2373462
O. Zariski, General theory of saturation and of saturated local rings II: Saturared local rings of dimension 1, American Journal of Mathematics, Vol. 93, No. 4, pp. 872-964 (1971). DOI: https://doi.org/10.2307/2373741
O. Zariski, General theory of saturation and of saturated local rings III: Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces, American Journal of Mathematics, Vol. 97, No. 2, pp. 415-502 (1975). DOI: https://doi.org/10.2307/2373720
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Thiago Filipe da Silva, Guilherme Schultz Netto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores pueden celebrar acuerdos contractuales separados para la distribución no exclusiva de la versión publicada del trabajo de la revista (por ejemplo, publicarlo en un repositorio institucional o en un libro), con el reconocimiento de su publicación inicial en esta revista.