On Frenet Apparatus of Curves in Rn

Autores

  • Isnaldo Barbosa UFAL
  • J. Adonai Seixas UFAL

DOI:

https://doi.org/10.14244/lajm.v1i01.3

Palavras-chave:

curve, Frenet apparatus, curvature, hypersurfaces

Resumo

In this paper, we present new explicit and nonrecursive formulas for the curvatures and the frame of Frenet of a regular curve with an arbitrary parameter in the Euclidean space Rn, n > 2, expressed only in terms of its derivatives.

Referências

Barbosa L. & do Carmo M. Helicoids, catenoids, and minimal hypersurfaces of Rn invariant by an one-parameter group of motions. An. Acad. Brasil. Cieˆncias., 53 (1981), 403-408.

do Carmo, M. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs.

Flanders, H. (1963). Differential Forms with Applications to the Physical Sciences. Dover Publication, New York.

Greub, W. (1975). Linear Algebra. Springer-Verlag New York Inc 1975. DOI: https://doi.org/10.1007/978-1-4684-9446-4

Gluck, H. (1966). Higher curvatures of curves in euclidean space. DOI: https://doi.org/10.2307/2313974

Kühnel, W. (2002) Differential geometry, curves-surfaces-manifolds, Translated from the (1999) German original by Bruce Hunt. Student Mathematical Library, Vol. 16, American Mathematical Society, Providence, RI, 2002.

Kuttler, K. (2012) Linear algebra: theory and applications The Saylor Foundation, 2012. [8] Lee, J. M. Manifolds and Differential Geometry. Graduate studies in mathematics. American Mathematical Society, 2009.

Lima, Elon L. (1965) Cálculo tensorial IMPA, RJ, Brasil, 2012.

O’Neill, B. (1966). Elementary Differential Geometry. Academic Press, New York. DOI: https://doi.org/10.1016/B978-1-4832-3170-9.50011-7

Steven J. Leon, Ake Björck, and Walter Gander. Gram-Schmidt orthogonalization: 100 years and more. Numerical Linear Algebra with Applications, 20(3):492–532, 2013. DOI: https://doi.org/10.1002/nla.1839

Sulanke, R. (2020). The Fundamental Theorem for Curves in the n-Dimensional Euclidean Space. Preprint.

Wolfram, S. (2019). Mathematica Software, Version 12.9.

Süha Yilmaz, S. & Turgut, M. (2008). A method to calculate Frenet apparatus of the curves in euclidean-5 space. International Scholarly and Scientific Research & Innovation, 2, No:7:483–485. Numerical Linear Algebra with Applications, 73:4:699– 704, DOI: 10.1080/00029890.1966.11970818. DOI: https://doi.org/10.1080/00029890.1966.11970818

Downloads

Publicado

20.12.2022

Como Citar

[1]
Barbosa, I. e Seixas, J.A. 2022. On Frenet Apparatus of Curves in Rn. Latin American Journal of Mathematics. 1, 01 (dez. 2022), 40–76. DOI:https://doi.org/10.14244/lajm.v1i01.3.

Edição

Seção

Artigos