Implicit equations Involving The p-Biharmonic Operator
DOI:
https://doi.org/10.14244/lajm.v4i1.38Palavras-chave:
p-biharmonic operator, Implicit Elliptic problems, Krasnoselskii TheoremResumo
In this research, we will study the existence of weak solutions for a class of implicit elliptic equations involving the p-biharmonic operator. Using a Krasnoselskii-Schaefer type theorem we establish our result, extending and complementing those obtained by R. Precup, 2020, and P.C. Carriao et al., 2009.
Referências
[1] Precup R. Implicit elliptic equations via Krasnoselskii–Schaefer type theorems. Electronic Journal of Qualitative Theory of Differential Equations. 2020;2020(87):1-9. DOI: https://doi.org/10.14232/ejqtde.2020.1.87
[2] Bonanno G, Di Bella B. A boundary value problem for fourth-order elastic beam equations. Journal of Mathematical Analysis and Applications. 2008;343(2):1166-76. DOI: https://doi.org/10.1016/j.jmaa.2008.01.049
[3] Lazer AC, McKenna PJ. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. Siam Review. 1990;32(4):537-78. DOI: https://doi.org/10.1137/1032120
[4] Micheletti AM, Pistoia A. Multiplicity results for a fourth-order semilinear elliptic problem. Nonlinear Analysis: Theory, Methods & Applications. 1998;31(7):895-908. DOI: https://doi.org/10.1016/S0362-546X(97)00446-X
[5] Carl S, Heikkil¨ä S. Discontinuous implicit elliptic boundary value problems. Differential Integral Equations. 1998;11:823-34. DOI: https://doi.org/10.57262/die/1367329478
[6] Cubiotti P. Existence results for highly discontinuous implicit elliptic equations. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali. 2022;100(1):5.
[7] Dacorogna B, Tanteri C. Implicit partial differential equations and the constraints of nonlinear elasticity. Journal de mathématiques pures et appliquées. 2002;81(4):311-41. DOI: https://doi.org/10.1016/S0021-7824(01)01235-1
[8] Marano SA. Implicit elliptic differential equations. Set-Valued Analysis. 1994;2:545-58. DOI: https://doi.org/10.1007/BF01033071
[9] Dacorogna B, Marcellini P. Implicit partial differential equations. vol. 37. Springer Science & Business Media; 2012.
[10] El Khalil A, Kellati S, Touzani A. On the principal frequency curve of the p-biharmonic operator. Arab Journal of Mathematical Sciences. 2011;17(2):89-99. DOI: https://doi.org/10.1016/j.ajmsc.2011.01.002
[11] Sun J, Wu Tf. Existence of nontrivial solutions for a biharmonic equation with p-Laplacian and singular sign-changing potential. Applied Mathematics Letters. 2017;66:61-7. DOI: https://doi.org/10.1016/j.aml.2016.11.001
[12] Sun J, Wu Tf. The Nehari manifold of biharmonic equations with p-Laplacian and singular potential. Applied Mathematics Letters. 2019;88:156-63. DOI: https://doi.org/10.1016/j.aml.2018.08.025
[13] Wang W. p-biharmonic equation with Hardy–Sobolev exponent and without the Ambrosetti–Rabinowitz condition. Electronic Journal of Qualitative Theory of Differential Equations. 2020;2020(42):1-16. DOI: https://doi.org/10.14232/ejqtde.2020.1.42
[14] Wang W, Zhao P. Nonuniformly nonlinear elliptic equations of p-biharmonic type. Journal of mathematical analysis and applications. 2008;348(2):730-8. DOI: https://doi.org/10.1016/j.jmaa.2008.07.068
[15] Marino G, Paratore A. Implicit equations involving the p-Laplace operator. Mediterranean Journal of Mathematics. 2021;18:1-20. DOI: https://doi.org/10.1007/s00009-021-01713-9
[16] Colasuonno F, Pucci P. Multiplicity of solutions for p (x)-polyharmonic elliptic Kirchhoff equations. Nonlinear Analysis: Theory, Methods & Applications. 2011;74(17):5962-74. DOI: https://doi.org/10.1016/j.na.2011.05.073
[17] Autuori G, Colasuonno F, Pucci P. On the existence of stationary solutions for higher-order p-Kirchhoff problems. Communications in Contemporary Mathematics. 2014;16(05):1450002. DOI: https://doi.org/10.1142/S0219199714500023
[18] Gao H, Li Y, Zhang B. A fixed point theorem of Krasnoselskii-Schaefer type and its applications in control and periodicity of integral equations. Fixed Point Theory. 2011;12(4):91-112.
[19] Adams R, Fournier JJ. Sobolev spaces. vol. 140. Elsevier; 2003.
[20] El Khalil A, Kellati S, Touzani A. On the spectrum of the-biharmonic operator. Electronic Journal of Differential Equations (EJDE)[electronic only]. 2002;2002:161-70.
[21] Gazzola F, Grunau HC, Sweers G. Optimal Sobolev and Hardy–Rellich constants under Navier boundary conditions. Annali di Matematica Pura ed Applicata. 2010;189:475-86. DOI: https://doi.org/10.1007/s10231-009-0118-5
[22] Carriao PC, Faria LF, Miyagaki OH. A biharmonic elliptic problem with dependence on the gradient and the Laplacian. Electronic Journal of Differential Equations (EJDE)[electronic only]. 2009;2009:Paper-No.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Eugenio Cabanillas Lapa, Gabriel Huaraca Pardo, Ronald Huayhua Huayhua

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores podem entrar em acordos contratuais adicionais separados para a distribuição não exclusiva da versão publicada do trabalho da revista (por exemplo, postá-lo em um repositório institucional ou publicá-lo em um livro), com um reconhecimento de sua publicação inicial nesta revista.