Some Tridiagonal Matrices of the Repunit Sequence
DOI:
https://doi.org/10.14244/lajm.v4i1.33Palabras clave:
Horadam sequence, Repunit sequence, Tridiagonal matricesResumen
This paper explores the connection between tridiagonal matrices and the repunit sequence, which is a type of Horadam sequence, and aims to establish new representations of repunit sequences using distinct tridiagonal matrices and their determinants. Motivated by earlier work relating tridiagonal matrices to second-order linear recurrences, we present another representation of the repunit sequence by tridiagonal matrices.
Citas
[1] Sloane NJA, et al.. The on-line encyclopedia of integer sequences; 2003. Available from: https://oeis.org/.
[2] Santos DC, Costa EA. A note on Repunit number sequence. Intermaths. 2024;5(1):54-66. DOI: https://doi.org/10.22481/intermaths.v5i1.14922
[3] Horadam AF. A generalized Fibonacci sequence. The American Mathematical Monthly. 1961;68(5):455-9. DOI: https://doi.org/10.1080/00029890.1961.11989696
[4] Horadam AF. Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly. 1965;3(3):161-76. DOI: https://doi.org/10.1080/00150517.1965.12431416
[5] Cerda G. Matrix methods in Horadam sequences. Boletíns de Matemáticas. 2012;19(2):97-106.
[6] Jaroma JH. Factoring Generalized Repunits. Bulletin of the Irish Mathematical Society. 2007;59:29-35. DOI: https://doi.org/10.33232/BIMS.0059.29.35
[7] Kalman D, Mena R. The Fibonacci numbers-exposed. Mathematics magazine. 2003;76(3):167-81. DOI: https://doi.org/10.1080/0025570X.2003.11953176
[8] Beiler AH. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. 2nd ed. Cambridge MA: Dover; 1966.
[9] Costa EA, Santos DC. Algumas propriedades dos números monodígitos e das repunidades. Revista de Matemática da UFOP. 2022;2(1):47-58.
[10] Yates S. Repunits and repetends. Star Publishing Co., Inc; 1982.
[11] Costa EA, Santos DC, Monteiro FS, Souza VMA. On the repunit sequence at negative indices. Revista de Matemática da UFOP. 2024;1(1):1-12.
[12] Falcon S. On the generating matrices of the k-Fibonacci numbers. Proyecciones. 2013;32(4):347-57. DOI: https://doi.org/10.4067/S0716-09172013000400004
[13] Santos DC, Costa EA. Números repunidades e a representação matricial. Revista Sergipana de Matemática e Educação Matemática. 2024;9(1):81-96. DOI: https://doi.org/10.34179/revisem.v9i1.19491
[14] Cahill ND, D’enrico JR, Narayan DA, Narayan JY. Fibonacci Determinants. The College Mathematics Journal. 2002;33(3):221-5. DOI: https://doi.org/10.1080/07468342.2002.11921945
[15] Kilic E, Tasci D. On sums of second order linear recurrences by Hessenberg matrices. The Rocky Mountain Journal of Mathematics. 2008:531-44. DOI: https://doi.org/10.1216/RMJ-2008-38-2-531
[16] Kilic E, Tasci D. On the second order linear recurrences by tridiagonal matrices. Ars Combin. 2009;91:11-8.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Eudes Antonio Costa, Douglas Catulio dos Santos, Paula Maria Machado Cruz Catarino
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores pueden celebrar acuerdos contractuales separados para la distribución no exclusiva de la versión publicada del trabajo de la revista (por ejemplo, publicarlo en un repositorio institucional o en un libro), con el reconocimiento de su publicación inicial en esta revista.