Introdução à Obstrução de Euler Local: dos sólidos platônicos às variedades determinantais
DOI:
https://doi.org/10.14244/lajm.v4i1.37Palabras clave:
teoria de obstrução, variedade singular, campo de vetor, índiceResumen
A obstrução local de Euler foi inicialmente definida por MacPherson para responder à conjectura de Deligne e Grothendieck sobre a existência e unicidade das classes de Chern para variedades algébricas singulares. No contexto de índices de campos vetoriais, Brasselet e Schwartz caracterizaram esse invariante, abordagem que seguiremos neste texto. Com base nessa definição, também apresentamos a obstrução de Euler de uma função e a obstrução de Euler de uma aplicação.
Citas
[1] MacPherson R. Chern Classes for Singular Algebraic Varieties. Annals of Mathematics. 1974;100(2):423-32. DOI: https://doi.org/10.2307/1971080
[2] Schwartz MH. Classes Caractéristiques Définies par une Stratification d’une Variété Analytique Complexe. CR Acad Sci Paris. 1965;260:3262-4.
[3] Brasselet JP, Schwartz MH. Sur les classes de Chern d’un ensemble analytique complexe, caractéristique d’Euler–Poincaré. Astérisque. 1981;82:93-147.
[4] Grulha NG Jr. Obstrução de Euler de Aplicações Analíticas [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2007.
[5] Brasselet JP. An Introduction to Characteristic Classes. Rio de Janeiro: IMPA; 2011.
[6] Martins EBC. Obstruction theory, characteristic classes and applications [Dissertação (Mestrado em Matemática)]. São Paulo: Universidade de São Paulo; 2022.
[7] Munkres JR. Elements of algebraic topology. CRC press; 2018. DOI: https://doi.org/10.1201/9780429493911
[8] Alexander JW. A proof of the invariance of certain constants of analysis situs. Transactions of the American Mathematical Society. 1915;16(2):148-54. DOI: https://doi.org/10.1090/S0002-9947-1915-1501007-5
[9] Hatcher A. Algebraic Topology. Cambridge: Cambridge University Press; 2002.
[10] Brasselet JP, Thuy NTB. Teorema de Poincaré-Hopf. CQD-Revista Eletrônica Paulista de Matemática. 2019. DOI: https://doi.org/10.21167/cqdvol16201923169664jpbntbt134162
[11] Sullivan D. Combinatorial invariants of analytic spaces. In: Proceedings of Liverpool Singularities—Symposium I. Springer; 2006. p. 165-77. DOI: https://doi.org/10.1007/BFb0066822
[12] Brasselet JP. Characteristic Classes and Singular Varieties. School on Singularities in Geometry, Topology, Foliations and Dynamics; 2002.
[13] Goresky M, MacPherson R. Stratified Morse Theory. In: Stratified Morse Theory. Springer; 1988. p. 3-22. DOI: https://doi.org/10.1007/978-3-642-71714-7_1
[14] Whitney H. Local Properties of Analytic Varieties. Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse. 1965:496-549. DOI: https://doi.org/10.1515/9781400874842-014
[15] Whitney H. Tangents to an Analytic Variety. Annals of Mathematics. 1965:496-549. DOI: https://doi.org/10.2307/1970400
[16] Brasselet JP, Lê DT, Seade J. Euler obstruction and indices of vector fields. Topology. 2000;39(6):1193-208. DOI: https://doi.org/10.1016/S0040-9383(99)00009-9
[17] Brasselet JP, Grulha Jr NG, Nguyen TTB. Local Euler Obstruction, Old and New III. Journal of Singularities. 2022;25:90-122. DOI: https://doi.org/10.5427/jsing.2022.25e
[18] Brasselet JP, Massey D, Parameswaran A, Seade J. Euler obstruction and defects of functions on singular varieties. Journal of the London Mathematical Society. 2004;70(1):59-76. DOI: https://doi.org/10.1112/S0024610704005447
[19] Seade J, Tibar M, Verjovsky A. Milnor numbers and Euler obstruction. Bulletin of the Brazilian Mathematical Society. 2005;36:275-83. DOI: https://doi.org/10.1007/s00574-005-0039-x
[20] Ament D, Nuño-Ballesteros J, Oréfice-Okamoto B, Tomazella J. The Euler obstruction of a function on a determinantal variety and on a curve. Bulletin of the Brazilian Mathematical Society, New Series. 2016;47(3):955-70. DOI: https://doi.org/10.1007/s00574-016-0198-y
[21] Decker W, Greuel GM, Pfister G, Schönemann H. SINGULAR 4-4-0 — A computer algebra system for polynomial computations; 2024. http://www.singular.uni-kl.de.
[22] Dutertre N, Grulha Jr NG. Lê–Greuel type formula for the Euler obstruction and applications. Advances in Mathematics. 2014;251:127-46. DOI: https://doi.org/10.1016/j.aim.2013.10.023
[23] Brasselet JP, Seade J, Suwa T. Vector Fields on Singular Varieties. Springer Science & Business Media; 2009. DOI: https://doi.org/10.1007/978-3-642-05205-7
[24] Ebeling W, Gusein-Zade SM. Chern obstructions for collections of 1-forms on singular varieties. In: Singularity Theory: Dedicated to Jean-Paul Brasselet on His 60th Birthday. World Scientific; 2007. p. 557-64. DOI: https://doi.org/10.1142/9789812707499_0021
[25] Brasselet JP, Grulha Jr NG, Ruas MAS. The Euler obstruction and the Chern obstruction. Bulletin of the London Mathematical Society. 2010;42(6):1035-43. DOI: https://doi.org/10.1112/blms/bdq063
[26] Grulha Jr NG, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics. 2022;33(04):2250029. DOI: https://doi.org/10.1142/S0129167X2250029X
[27] Arbarello E, Cornalba M, Griffiths PA, Harris J. Geometry of Algebraic Curves. New York: Springer-Verlag; 2011. DOI: https://doi.org/10.1007/978-3-540-69392-5
[28] Bonnard B, Faugère JC, Jacquemard A, Safey El Din M, Verron T. Determinantal sets, singularities and application to optimal control in medical imagery. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation; 2016. p. DOI: https://doi.org/10.1145/2930889.2930916
103-10.
[29] Jockers H, Kumar V, Lapan JM, Morrison DR, Romo M. Nonabelian 2D Gauge theories for determinantal Calabi-Yau varieties. Journal of High Energy Physics. 2012;2012(11):1-47. DOI: https://doi.org/10.1007/JHEP11(2012)166
[30] Gusein-Zade SM, Ebeling W. On indices of 1-forms on determinantal singularities. Proceedings of the Steklov Institute of Mathematics. 2009;267(1):113-24. DOI: https://doi.org/10.1134/S0081543809040099
[31] Pereira MdS. Variedades determinantais e singularidades de matrizes [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2010.
[32] Gaffney T, Grulha Jr NG, Ruas MAS. The Local Euler Obstruction and Topology of the Stabilization of Associated Determinantal Varieties. Mathematische Zeitschrift. 2019;291(3):905-30. DOI: https://doi.org/10.1007/s00209-018-2141-y
[33] Damon J, Pike B. Solvable Groups, Free Divisors and Nonisolated Matrix Singularities II: Vanishing Topology. Geometry & Topology. 2014;18(2):911-62. DOI: https://doi.org/10.2140/gt.2014.18.911
[34] de Omena R, Grulha Jr NG, Pereira M. From Milnor Number to the Euler Obstruction of a Map on Isolated Determinantal Singularities. Manuscripta Mathematica. 2024:1-17. DOI: https://doi.org/10.1007/s00229-023-01528-w
[35] Gaffney T. Polar multiplicities and equisingularity of map germs. Topology. 1993;32(1):185-223. DOI: https://doi.org/10.1016/0040-9383(93)90045-W
[36] de Omena R. Do Número de Milnor à Obstrução de Euler de uma Aplicação em Singularidades Determinantais [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2023.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Raphael de Omena Marinho

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores pueden celebrar acuerdos contractuales separados para la distribución no exclusiva de la versión publicada del trabajo de la revista (por ejemplo, publicarlo en un repositorio institucional o en un libro), con el reconocimiento de su publicación inicial en esta revista.






