An exact sequence for generalized string links over surfaces

Autores

  • Juliana Roberta Theodoro Universidade Federal de Alagoas

DOI:

https://doi.org/10.14244/lajm.v2i01.13

Palavras-chave:

braid groups, homotopy groups, generalized string links, presentation of braids, string link groups

Resumo

In this work we extend Goldberg result [4] for generalized string links over closed, connected and orientable surfaces of genus $g \geq 1$, i.e., different from the sphere (up to link-homotopy).

Biografia do Autor

Juliana Roberta Theodoro, Universidade Federal de Alagoas

Profa. Dra. Juliana R. Theodoro de Lima PhD in Mathematics at USP- University of São Paulo - Area: Algebraic Topology/ Algebra Adjunct Professor, Researcher and Vice-Principal at UFAL Mathematics Institute UFAL- Federal University of Alagoas, A. C. Simões Campus  Lourival Melo Mota Avenue, no number, Cidade Universitária Postal Code: 57072-900 - Maceió city, Alagoas, Brasil +55 82 981896005

Referências

Artin, E. Theory of braids. Annals of Mathematics (1947), 101–126. DOI: https://doi.org/10.2307/1969218

Birman, J. S. Braids, Links, and Mapping Class Groups., vol. 82. Princeton University Press, 2016.

Dehornoy, P., Dynnikov, I., Rolfsen, D., and Wiest, B. Ordering braids. No. 148. American Mathematical Soc., 2008. DOI: https://doi.org/10.1090/surv/148

Goldberg, C. H. An exact sequence of braid groups. Mathematica Scandinavica 33, 1 (1974), 69–82. DOI: https://doi.org/10.7146/math.scand.a-11472

Goldsmith, D. L. Homotopy of braids: in answer to a question of E. Artin. In Topology Conference (1974), Springer, pp. 91–96. DOI: https://doi.org/10.1007/BFb0064014

Gonzalez-Meneses, J. New presentations of surface braid groups. Journal of Knot Theory and Its Ramifications 10, 03 (2001), 431–451. DOI: https://doi.org/10.1142/S0218216501000949

Gonzalez-Meneses, J. Ordering pure braid groups on compact, connected surfaces. Pacific Journal of Mathematics 203, 2 (2002), 369–378. DOI: https://doi.org/10.2140/pjm.2002.203.369

Habegger, N., and Lin, X.-S. The classification of links up to link-homotopy. Journal of the American Mathematical Society 3, 2 (1990), 389–419. DOI: https://doi.org/10.1090/S0894-0347-1990-1026062-0

Levine, J. P. An approach to homotopy classification of links. Transactions of the American Mathematical Society 306, 1 (1988), 361–387. DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7

Lingua, F., Wang, W., Shpani, L., and Capogrosso-Sansone, B. A topological signature of multipartite entanglement. arXiv preprint arXiv:1905.07454 (2019).

Milnor, J. Link groups. Annals of Mathematics (1954), 177–195. DOI: https://doi.org/10.2307/1969685

Theodoro de Lima, J. R. Homotopy of braids on surfaces: Extending goldsmith’s answer to artin. Journal of Knot Theory and Its Ramifications 28, 12 (2019), 1950072. DOI: https://doi.org/10.1142/S021821651950072X

Theodoro de Lima, J. R., and de Mattos, D. Ordering homotopy string links over surfaces. Journal of Knot Theory and Its Ramifications 25, 01 (2016), 1650001. DOI: https://doi.org/10.1142/S0218216516500012

Yurasovskaya, E. Homotopy string links over surfaces. PhD thesis, University of British Columbia, 2008.

Downloads

Publicado

04.09.2023

Como Citar

[1]
Theodoro, J.R. 2023. An exact sequence for generalized string links over surfaces. Latin American Journal of Mathematics. 2, 01 (set. 2023), 99–112. DOI:https://doi.org/10.14244/lajm.v2i01.13.

Edição

Seção

Artigos