An exact sequence for generalized string links over surfaces
DOI:
https://doi.org/10.14244/lajm.v2i01.13Palavras-chave:
braid groups, homotopy groups, generalized string links, presentation of braids, string link groupsResumo
In this work we extend Goldberg result [4] for generalized string links over closed, connected and orientable surfaces of genus $g \geq 1$, i.e., different from the sphere (up to link-homotopy).
Referências
Artin, E. Theory of braids. Annals of Mathematics (1947), 101–126. DOI: https://doi.org/10.2307/1969218
Birman, J. S. Braids, Links, and Mapping Class Groups., vol. 82. Princeton University Press, 2016.
Dehornoy, P., Dynnikov, I., Rolfsen, D., and Wiest, B. Ordering braids. No. 148. American Mathematical Soc., 2008. DOI: https://doi.org/10.1090/surv/148
Goldberg, C. H. An exact sequence of braid groups. Mathematica Scandinavica 33, 1 (1974), 69–82. DOI: https://doi.org/10.7146/math.scand.a-11472
Goldsmith, D. L. Homotopy of braids: in answer to a question of E. Artin. In Topology Conference (1974), Springer, pp. 91–96. DOI: https://doi.org/10.1007/BFb0064014
Gonzalez-Meneses, J. New presentations of surface braid groups. Journal of Knot Theory and Its Ramifications 10, 03 (2001), 431–451. DOI: https://doi.org/10.1142/S0218216501000949
Gonzalez-Meneses, J. Ordering pure braid groups on compact, connected surfaces. Pacific Journal of Mathematics 203, 2 (2002), 369–378. DOI: https://doi.org/10.2140/pjm.2002.203.369
Habegger, N., and Lin, X.-S. The classification of links up to link-homotopy. Journal of the American Mathematical Society 3, 2 (1990), 389–419. DOI: https://doi.org/10.1090/S0894-0347-1990-1026062-0
Levine, J. P. An approach to homotopy classification of links. Transactions of the American Mathematical Society 306, 1 (1988), 361–387. DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7
Lingua, F., Wang, W., Shpani, L., and Capogrosso-Sansone, B. A topological signature of multipartite entanglement. arXiv preprint arXiv:1905.07454 (2019).
Milnor, J. Link groups. Annals of Mathematics (1954), 177–195. DOI: https://doi.org/10.2307/1969685
Theodoro de Lima, J. R. Homotopy of braids on surfaces: Extending goldsmith’s answer to artin. Journal of Knot Theory and Its Ramifications 28, 12 (2019), 1950072. DOI: https://doi.org/10.1142/S021821651950072X
Theodoro de Lima, J. R., and de Mattos, D. Ordering homotopy string links over surfaces. Journal of Knot Theory and Its Ramifications 25, 01 (2016), 1650001. DOI: https://doi.org/10.1142/S0218216516500012
Yurasovskaya, E. Homotopy string links over surfaces. PhD thesis, University of British Columbia, 2008.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Juliana Roberta Theodoro de Lima
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores podem entrar em acordos contratuais adicionais separados para a distribuição não exclusiva da versão publicada do trabalho da revista (por exemplo, postá-lo em um repositório institucional ou publicá-lo em um livro), com um reconhecimento de sua publicação inicial nesta revista.