The equality between ε(f ) and δ(f ) proved via Newton polygons
DOI:
https://doi.org/10.14244/lajm.v2i02.16Keywords:
Key polynomials, Newton polygons, MacLane-Vaquié key polynomials, abstract key polynomialsAbstract
In this paper, we reproduce the proof given in [1] of the equality be- tween ε(f) and δ(f), two important objects in Valuation Theory. This proof uses the notion of Newton polygons. We present some details that were omitted in [1] and illustrate a step-by-step construction of a Newton Polygon associated to a specific finite set.
References
Bengus-Lasnier A. Minimal Pairs, Truncation and Diskoids. J. Algebra. 2021; 579: 388–427. DOI: https://doi.org/10.1016/j.jalgebra.2021.03.019
Cmiel H, Kuhlmann F-V, Szewczyk P. Continuity of roots for polynomials over valued fields. Comm. Algebra. 2023; 51 (4): 1383–1412. DOI: https://doi.org/10.1080/00927872.2022.2137172
Decaup J, Spivakovsky M, Mahboub W. Abstract key polynomials and comparison theorems with the key polynomials of MacLane-Vaquie. Illinois J. Math. 2018; 62(1-4): 253 – 270. DOI: https://doi.org/10.1215/ijm/1552442662
Engler A, Prestel A. Valued Fields. New York: Springer-Verlag; 2005. 205 p.
Koblitz N. p-adic numbers, p-adic analysis and zeta-functions. New York: Springer-Verlag; 1977. 122 p. DOI: https://doi.org/10.1007/978-1-4684-0047-2
Mac Lane S. A construction for absolute values in polynomial rings. Trans. Amer.
Math. Soc. 1936; 40: 363–395. DOI: https://doi.org/10.1090/S0002-9947-1936-1501879-8
Novacoski J. Key polynomials and minimal pairs. J. Algebra. 2019; 523: 1–14. DOI: https://doi.org/10.1016/j.jalgebra.2018.12.022
Novacoski J, Spivakovsky M. Key polynomials and pseudo-convergent sequences. J. Algebra. 2018; 495: 199–219. DOI: https://doi.org/10.1016/j.jalgebra.2017.11.006
Novacoski J, Spivakovsky M. On the local uniformization problem. Algebra, Logic and Number Theory, Banach Center Publ. 2016; 108: 231–238. DOI: https://doi.org/10.4064/bc108-0-17
Silva de Souza C. H. Um estudo de valorizações transcendentes e algébricas via polinômios-chaves e pares minimais [Thesis (Master’s degree)]. São Carlos: Universidade Federal de São Carlos; 2022 [cited 2022 Jun 10]. 244 s. Available from:
https://repositorio.ufscar.br/handle/ufscar/15679.
Vaquié M. Extension de valuation et polygone de Newton. Ann. Inst. Fourier. 2008; 58 (7): 2503–2541. DOI: https://doi.org/10.5802/aif.2421
Vaquié M. Extension d’une valuation. Trans. Amer. Math. Soc. 2007; 359(7): 3439–3481. DOI: https://doi.org/10.1090/S0002-9947-07-04184-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Caio Henrique Silva de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors may enter into separate contractual agreements for the non-exclusive distribution of the journal's published version of the work (for example, posting it in an institutional repository or publishing it in a book), with an acknowledgment of its initial publication in this journal.