The equality between ε(f ) and δ(f ) proved via Newton polygons
DOI:
https://doi.org/10.14244/lajm.v2i02.16Palabras clave:
Key polynomials, Newton polygons, MacLane-Vaquié key polynomials, abstract key polynomialsResumen
In this paper, we reproduce the proof given in [1] of the equality be- tween ε(f) and δ(f), two important objects in Valuation Theory. This proof uses the notion of Newton polygons. We present some details that were omitted in [1] and illustrate a step-by-step construction of a Newton Polygon associated to a specific finite set.
Citas
Bengus-Lasnier A. Minimal Pairs, Truncation and Diskoids. J. Algebra. 2021; 579: 388–427. DOI: https://doi.org/10.1016/j.jalgebra.2021.03.019
Cmiel H, Kuhlmann F-V, Szewczyk P. Continuity of roots for polynomials over valued fields. Comm. Algebra. 2023; 51 (4): 1383–1412. DOI: https://doi.org/10.1080/00927872.2022.2137172
Decaup J, Spivakovsky M, Mahboub W. Abstract key polynomials and comparison theorems with the key polynomials of MacLane-Vaquie. Illinois J. Math. 2018; 62(1-4): 253 – 270. DOI: https://doi.org/10.1215/ijm/1552442662
Engler A, Prestel A. Valued Fields. New York: Springer-Verlag; 2005. 205 p.
Koblitz N. p-adic numbers, p-adic analysis and zeta-functions. New York: Springer-Verlag; 1977. 122 p. DOI: https://doi.org/10.1007/978-1-4684-0047-2
Mac Lane S. A construction for absolute values in polynomial rings. Trans. Amer.
Math. Soc. 1936; 40: 363–395. DOI: https://doi.org/10.1090/S0002-9947-1936-1501879-8
Novacoski J. Key polynomials and minimal pairs. J. Algebra. 2019; 523: 1–14. DOI: https://doi.org/10.1016/j.jalgebra.2018.12.022
Novacoski J, Spivakovsky M. Key polynomials and pseudo-convergent sequences. J. Algebra. 2018; 495: 199–219. DOI: https://doi.org/10.1016/j.jalgebra.2017.11.006
Novacoski J, Spivakovsky M. On the local uniformization problem. Algebra, Logic and Number Theory, Banach Center Publ. 2016; 108: 231–238. DOI: https://doi.org/10.4064/bc108-0-17
Silva de Souza C. H. Um estudo de valorizações transcendentes e algébricas via polinômios-chaves e pares minimais [Thesis (Master’s degree)]. São Carlos: Universidade Federal de São Carlos; 2022 [cited 2022 Jun 10]. 244 s. Available from:
https://repositorio.ufscar.br/handle/ufscar/15679.
Vaquié M. Extension de valuation et polygone de Newton. Ann. Inst. Fourier. 2008; 58 (7): 2503–2541. DOI: https://doi.org/10.5802/aif.2421
Vaquié M. Extension d’une valuation. Trans. Amer. Math. Soc. 2007; 359(7): 3439–3481. DOI: https://doi.org/10.1090/S0002-9947-07-04184-0
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Caio Henrique Silva de Souza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores pueden celebrar acuerdos contractuales separados para la distribución no exclusiva de la versión publicada del trabajo de la revista (por ejemplo, publicarlo en un repositorio institucional o en un libro), con el reconocimiento de su publicación inicial en esta revista.