A survey on Han's conjecture
DOI:
https://doi.org/10.14244/lajm.v2i02.18Palavras-chave:
homologia de Hochschild, Conjectura de Han, Dimensão global, homologia de álgebras associativas, álgebras de dimensão finitaResumo
In 1989, D. Happel pointed out for a possible connection between the global dimension of a finite-dimensional algebra and its Hochschild cohomology: is it true that the vanishing of Hochschild cohomology higher groups is sufficient to deduce that the global dimension is finite? After the discovery of a counterexample, Y. Han proposed, in 2006, to reformulate this question to homology. In this survey, after introducing the concepts and results involved, I present the efforts made until now towards the comprehension of Han's conjecture; which includes: examples of algebras that have been proven to satisfy it and extensions to preserve it.
Referências
Hochschild G. On the Cohomology Groups of an Associative Algebra. Annals of Mathematics. 1945;46(1):58-67. Available from: https://doi.org/10.2307/1969145. DOI: https://doi.org/10.2307/1969145
Cartan H, Eilenberg S. Homological Algebra. Princeton University Press; 1956. DOI: https://doi.org/10.1515/9781400883844
Happel D. Hochschild cohomology of finite—dimensional algebras. In: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin. Springer Berlin Heidelberg; 1989. p. 108-26. Available from: https://doi.org/10.1007/BFb0084073. DOI: https://doi.org/10.1007/BFb0084073
Buchweitz RO, Green EL, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Mathematical Research Letters. 2005;12(6):805-16. Available from: https://doi.org/10.4310/MRL.2005.v12.n6.a2. DOI: https://doi.org/10.4310/MRL.2005.v12.n6.a2
Skoldberg E. The Hochschild Homology of Truncated and Quadratic Monomial Algebras. Journal of the London Mathematical Society. 1999 02;59(1):76-86. Available from: https://doi.org/10.1112/S0024610799007036. DOI: https://doi.org/10.1112/S0024610799007036
Han Y. Hochschild (Co)Homology Dimension. Journal of the London Mathematical Society. 2006 06;73(3):657-68. Available from: https://doi.org/10.1112/S002461070602299X. DOI: https://doi.org/10.1112/S002461070602299X
Weibel C A. An Introduction to Homological Algebra. vol. 38 of Cambridge Studiesin Advanced Mathematics. Cambridge University Press; 1994. DOI: https://doi.org/10.1017/CBO9781139644136
Auslander M. On the Dimension of Modules and Algebras (III): Global Dimension. Nagoya Mathematical Journal. 1955;9:67-77. Available from: https://doi.org/10.1017/S0027763000023291. DOI: https://doi.org/10.1017/S0027763000023291
Lam TY. A First Course in Noncommutative Rings. vol. 131 of Graduate Texts in Mathematics. 2nd ed. Springer New York, NY; 2001. Available from: https://doi.org/10.1007/978-1-4419-8616-0. DOI: https://doi.org/10.1007/978-1-4419-8616-0
Eilenberg S, Nagao H, Nakayama T. On the Dimension of Modules and Algebras, IV: Dimension of Residue Rings of Hereditary Rings. Nagoya Mathematical Journal. 1956;10:87-95. Available from: https://doi.org/10.1017/ S002776300000009X. DOI: https://doi.org/10.1017/S002776300000009X
Assem I, Skowronski A, Simson D. Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory. vol. 65 of London Mathematical Society Student Texts. Cambridge University Press; 2006. DOI: https://doi.org/10.1017/CBO9780511614309
Lam TY. Lectures on Modules and Rings. vol. 198 of Graduate Texts in Mathematics. Springer New York, NY; 1999. Available from: https://doi. org/10.1007/978-1-4612-0525-8. DOI: https://doi.org/10.1007/978-1-4612-0525-8
Kassel C. Homology and cohomology of associative algebras. A concise introduction to cyclic homology. 2004. Advanced School on Non-commutative Geometry ICTP, Trieste, August 2004. Available from: https://cel. archives-ouvertes.fr/cel-00119891/.
Loday JL. Cyclic Homology. vol. 301 of Grundlehren der mathematischen Wissenschaften. 2nd ed. Springer Berlin, Heidelberg; 1998. Available from: https://doi.org/10.1007/978-3-662-11389-9. DOI: https://doi.org/10.1007/978-3-662-11389-9
Benson DJ. Representations and Cohomology II. vol. 31 of Cambridge Studies in Advanced Mathematics. Cambridge University Press; 1991.
Benson DJ. Representations and Cohomology I. vol. 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press; 1991.
Rickard J. Derived Equivalences As Derived Functors. Journal of the London Mathematical Society. 1991;s2-43(1):37-48. Available from: https://doi.org/10.1112/jlms/s2-43.1.37. DOI: https://doi.org/10.1112/jlms/s2-43.1.37
Keller B. Invariance of cyclic homology under derived equivalence. In: Representation Theory of Algebras: Seventh International Conference on Representations of Algebras, August 22-26, 1994, Cocoyoc, Mexico. vol. 18. American Mathematical Soc.; 1996. p. 353-61.
Berg CF. Structure Theorems for Basic Algebras. arXiv; 2011. Available from: https://arxiv.org/abs/1102.1100.
Keller B. Invariance and localization for cyclic homology of DG algebras. Journal of Pure and Applied Algebra. 1998;123(1):223-73. Available from: https:// doi.org/10.1016/S0022-4049(96)00085-0. DOI: https://doi.org/10.1016/S0022-4049(96)00085-0
Swan RG. The nontriviality of the restriction map in the cohomology of groups. Proc Amer Math Soc. 1960;11:885-7. Available from: https://doi.org/10. 1090/S0002-9939-1960-0124050-2. DOI: https://doi.org/10.1090/S0002-9939-1960-0124050-2
Burghelea D. The cyclic homology of the group rings. Commentarii mathematici Helvetici. 1985;60:354-65. Available from: http://eudml.org/doc/ 140019. DOI: https://doi.org/10.1007/BF02567420
Cibils C. Hochschild homology of an algebra whose quiver has no oriented cycles. In: Representation Theory I: Finite Dimensional Algebras. vol. 1177 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg; 1986. p. 55-9. Available from: https://link.springer.com/content/pdf/10. 1007/BFb0075258.pdf. DOI: https://doi.org/10.1007/BFb0075258
Avramov LL, Vigue ́-Poirrier M. Hochschild homology criteria for smoothness. International Mathematics Research Notices. 1992 01;1992(1):17-25. Available from: https://doi.org/10.1155/S1073792892000035. DOI: https://doi.org/10.1155/S1073792892000035
BACH (The Buenos Aires Cyclic Homology Group). A Hochschild homology criterium for the smoothness of an algebra. Commentarii Mathematici Helvetici. 1994;69:163-8. Available from: https://doi.org/10.1007/ BF02564480. DOI: https://doi.org/10.1007/BF02564480
Han Y, Xu Y. Hochschild (Co)homology of Exterior Algebras. Communications in Algebra. 2006;35(1):115-31. Available from: https://doi.org/10.1080/00927870601041375. DOI: https://doi.org/10.1080/00927870601041375
Bergh P, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra & Number Theory. 2008;2(5):501-22. Available from: https://doi.org/10.2140/ant.2008.2.501. DOI: https://doi.org/10.2140/ant.2008.2.501
Bergh PA, Madsen D. Hochschild homology and global dimension. Bulletin of the London Mathematical Society. 2009;41(3):473-82. Available from: https://doi.org/10.1112/blms/bdp018. DOI: https://doi.org/10.1112/blms/bdp018
Solotar A, Vigué-Poirrier M. Two classes of algebras with infinite Hochschild homology. Proceedings of the American Mathematical Society. 2010;138(3):861-9. Available from: https://doi.org/10.1090/ S0002-9939-09-10168-5. DOI: https://doi.org/10.1090/S0002-9939-09-10168-5
Solotar A, Suárez-Alvarez M, Vivas Q. Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case. Annales de l’Institut Fourier. 2013;63(3):923-56. Available from: https://doi.org/10.5802/aif. 2780. DOI: https://doi.org/10.5802/aif.2780
Bergh PA, Madsen DO. Hochschild homology and trivial extension algebras. Proc Amer Math Soc. 2017;145(4):1475-80. ArXiv:1509.09039. Available from: https://doi.org/10.1090/proc/13363. DOI: https://doi.org/10.1090/proc/13363
Avramov LL, Iyengar S. Gaps in Hochschild cohomology imply smoothness for commutative algebras. Mathematical Research Letters. 2005;12(6):789-804. Available from: https://doi.org/10.4310/MRL.2005.v12.n6.a1. DOI: https://doi.org/10.4310/MRL.2005.v12.n6.a1
Xu Y, Han Y, Jiang W. Hochschild cohomology of truncated quiver algebras. Science in China Series A: Mathematics. 2007;50:727-36. Available from: https: //doi.org/10.1007/s11425-007-2085-x. DOI: https://doi.org/10.1007/s11425-007-2085-x
Drinfel’d VG. Quantum groups; 1987. Proc. Int. Congr. Math., Berkeley/Calif. 1986, Vol. 1, 798-820.
Beilinson A, Ginzburg V, Soergel W. Koszul Duality Patterns in Representation Theory. J Amer Math Soc. 1996;9:473-527. Available from: https://doi. org/10.1090/S0894-0347-96-00192-0. DOI: https://doi.org/10.1090/S0894-0347-96-00192-0
Igusa K. Notes on the no loops conjecture. Journal of Pure and Applied Algebra. 1990;69(2):161-76. Available from: https://doi.org/10.1016/0022-4049(90)90040-O. DOI: https://doi.org/10.1016/0022-4049(90)90040-O
Goodearl KR, Hodges TJ, Lenagan TH. Krull and global dimensions of Weyl algebras over division rings. Journal of Algebra. 1984;91(2):334-59. Available from: https://doi.org/10.1016/0021-8693(84)90107-8. DOI: https://doi.org/10.1016/0021-8693(84)90107-8
Farinati M A, Solotar A L, Suárez-Álvarez M. Hochschild homology and cohomology of generalized Weyl algebras. Annales de l’Institut Fourier. 2003;53(2):465-88. Available from: https://doi.org/10.5802/aif.1950. DOI: https://doi.org/10.5802/aif.1950
Cibils C, Redondo MJ, Solotar A. Han’s conjecture and Hochschild homology for null-square projective algebras. Indiana Univ Math J. 2021;70(2):639-68. Available from: https://doi.org/10.1512/iumj.2021.70.8402. DOI: https://doi.org/10.1512/iumj.2021.70.8402
Cibils C, Lanzilotta M, Marcos EN, Solotar A. Han’s conjecture for bounded extensions. Journal of Algebra. 2022;598:48-67. Available from: https://doi.org/10.1016/j.jalgebra.2022.01.022. DOI: https://doi.org/10.1016/j.jalgebra.2022.01.022
Iusenko K, MacQuarrie J. Homological properties of extensions of abstract and pseudocompact algebras; 2021. Preprint from arXiv:2108.12923.
Cibils C, Lanzilotta M, Marcos EN, Solotar A. Split bounded extension algebras and Han’s conjecture. Pacific Journal of Mathematics. 2020;307:63-77. Available from: https://doi.org/10.2140/pjm.2020.307.63. DOI: https://doi.org/10.2140/pjm.2020.307.63
Cibils C, Lanzilotta M, Marcos EN, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society. 2021;53(6):1636-50. Available from: https://doi.org/10.1112/blms.12516. DOI: https://doi.org/10.1112/blms.12516
Cibils C, Lanzilotta M, Marcos EN, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proc Amer Math Soc. 2020;148:2421-32. Available from: https://doi.org/10.1090/proc/14936. DOI: https://doi.org/10.1090/proc/14936
Hochschild G. Relative Homological Algebra. Transactions of the American Mathematical Society. 1956;82(1):246-69. Available from: https://doi.org/ 10.2307/1992988. DOI: https://doi.org/10.1090/S0002-9947-1956-0080654-0
Cruz GC. Homologia de Álgebras Pseudocompactas: as fronteiras da conjectura de Han. Universidade de São Paulo; 2023. Available from: https://doi.org/ 10.11606/D.45.2023.tde-20062023-140944.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Guilherme da Costa Cruz
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores podem entrar em acordos contratuais adicionais separados para a distribuição não exclusiva da versão publicada do trabalho da revista (por exemplo, postá-lo em um repositório institucional ou publicá-lo em um livro), com um reconhecimento de sua publicação inicial nesta revista.