Model Theory Inspired by Modern Algebraic Geometry
A Survey of Sheaf Representations for Categorical Model Theory
DOI:
https://doi.org/10.14244/lajm.v2i01.8Palavras-chave:
Sheaves, Grothendieck Topoi, Categorical Logic, SchemesResumo
In this survey, we expound sheaf representations of categories in the context of categorical logic. Namely, we present classifying topoi of coherent theories in terms of equivariant sheaves of groupoid (and then explore the generalization of this technique to a more general categorical context); expose a representation of Grothendieck topoi as global sections of sheaf and, finally, show a quick introduction to logical schemes, a proposed model-theoretic analogue to the schemes of Algebraic Geometry.
Referências
Awodey S, Forssell H, First-Order Logical Duality, Annals of Pure and Applied Logic, 2013 164 (3): 319-348. DOI: https://doi.org/10.1016/j.apal.2012.10.016
Awodey S, Logic in Topoi: Functorial Semantics for Higher-Order Logic, Dissertation, University of Chicago, 1997.
Awodey S, Sheaf Representations and Duality in Logic In: Casadio C (ed.), Scott P (ed.),Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics Springer International Publishing, 2021, pp. 39–57. DOI: https://doi.org/10.1007/978-3-030-66545-6_2
Breiner S, Scheme representation for first-order logic, PhD thesis, Carnegie Mellon University, 2014. Available at http://arxiv.org/abs/1402. 2600v1.
Bunge M, An application of descent to a classification theorem for toposes, Mathematical Proceedings of the Cambridge Philosophical Society , 1990, 107(1) :59–79. DOI: https://doi.org/10.1017/S0305004100068365
Butz C, Logical and Cohomological Aspects of the Space of Points of a Topos, PhD thesis, Utrecht University, 1996.
Butz C, Moerdijk I, Representing topoi by topological groupoids, Journal of Pure and Applied Algebra, 1998, 130(3): 223–235. DOI: https://doi.org/10.1016/S0022-4049(97)00107-2
Butz C, Moerdijk I, Topological Representation of Sheaf Cohomology of Sites,Compositio Mathematica, 1999, 118(2): 217-233. DOI: https://doi.org/10.1023/A:1001169215774
Caramello O, Theories, Sites, Toposes, Oxford University Press, 2018. DOI: https://doi.org/10.1093/oso/9780198758914.001.0001
Grothendieck A, Dieudonné J, Éléments de Géométrie Algébrique: Le Langage des schémas, Institut des Hautes Études Scientifiques, 1960. DOI: https://doi.org/10.1007/BF02684778
Johnstone P, Sketches of an Elephant: A Topos Theory Compendium, vol I, Oxford University Press, 2002.
Johnstone P, Sketches of an Elephant: A Topos Theory Compendium, vol II, Oxford University Press, 2002. DOI: https://doi.org/10.1093/oso/9780198515982.001.0001
Forssell H, First-Order Logical Duality, PhD thesis, Carnegie Mellon University, 2008.
Forssell H, Subgroupoids and Quotient Theories, preprint. Available at https://arxiv.org/abs/1111.2952.
Forssell H, Topological Representation of Geometric Theories, Mathematical Logic Quarterly, 2012, 58(6): pp. 380–393. DOI: https://doi.org/10.1002/malq.201100080
Funk J, Hofstra P, Steinberg B, Isotropy and crossed toposes, Theory and Applications of Categories, 2012, 26(24): 660 – 709.
Hodges W, A Shorter Model Theory, Cambridge University Press, 1997.
Johnstone P, Factorization theorems for geometric morphisms, I, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 1981, 22(1): 3–17.
Joyal A, Tierney M, An extension of the Galois theory of Grothendieck, Memoirs of the American Mathematician Society, 309, 1984. DOI: https://doi.org/10.1090/memo/0309
Makkai M, Reyes GE, First Order Categorical Logic, Lecture Notes in Mathematics, 611, Springer-Verlag, 1977. DOI: https://doi.org/10.1007/BFb0066201
Moerdijk I, The Classifying Topos of a Continuous Groupoid. I, Transactions of the American Mathematical Society, 1988, 310(2):629–668. DOI: https://doi.org/10.1090/S0002-9947-1988-0973173-9
Moerdijk I, The Classifying Topos of a Continuous Groupoid. II, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 1990, 31(2):137–168.
Paré R, Schumacher D, Abstract families and the adjoint functor theorems In: Johnstone P (ed.), Paré R (ed.), Abstract families and the adjoint functor theorems, Lecture Notes in Mathematics, 1978, 661, pp. 1–125. DOI: https://doi.org/10.1007/BFb0061361
Mac Lane S, Moerdijk I, Sheaves in Geometry and Logic, Universitext, Springer-Verlag, 1994. DOI: https://doi.org/10.1007/978-1-4612-0927-0
Martins, Y. Cohesive 2-Topoi, October 2022.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Gabriel Bittencourt Rios, Hugo Luiz Mariano
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores podem entrar em acordos contratuais adicionais separados para a distribuição não exclusiva da versão publicada do trabalho da revista (por exemplo, postá-lo em um repositório institucional ou publicá-lo em um livro), com um reconhecimento de sua publicação inicial nesta revista.