A Universal Algebraic Survey of C∞-Rings
DOI:
https://doi.org/10.14244/lajm.v1i01.5Palabras clave:
C∞−rings, Algebraic constructionsResumen
This survey brings a detailed and systematic exposition of some fundamental results regarding the Universal Algebra of C∞−rings. Some of these were nowhere to be found – stated or proved – in the current literature. Our main contribution is to bundle these results up in a single text, using the unifying language of Universal Algebra and referring the reader to detailed proofs. Such a presentation is inspired by the treatment given by D. Joyce in [1] to some concepts involving these rings. Thus, we provide a comprehensive material with many known “taken for granted” results and constructions used everywhere in the literature about C∞−rings and their applications, providing a “propaedeutic exposition” for the reader’s benefit.
Citas
Ieke Moerdijk and Gonzalo E Reyes. Models for smooth infinitesimal analysis. Springer Science & Business Media, 2013.
Dominic Joyce. Algebraic Geometry over C∞-rings. Number 1256. American Mathematical Society, 2019. DOI: https://doi.org/10.1090/memo/1256
Eduardo J Dubuc. C∞-schemes. American Journal of Mathematics, 103(4):683– 690, 1981. DOI: https://doi.org/10.2307/2374046
Jean Cerqueira Berni and Hugo Luiz Mariano. A geometria diferencial sintética e os mundos onde podemos interpretá-la: um convite ao estudo dos aneis C∞. Revista Matemática Universitária, 1:5–30, 2022. DOI: https://doi.org/10.21711/26755254/rmu20222
Dominic Joyce. An introduction to C∞-schemes and C∞-algebraic geometry. arXiv:1104.4951, 2011.
Ieke Moerdijk and Gonzalo E Reyes. Rings of smooth functions and their localizations, i. Journal of Pure and Applied Algebra, (99):324–336, 1986. DOI: https://doi.org/10.1016/0021-8693(86)90030-X
Jean Cerqueira Berni and Hugo Luiz Mariano. Classifying toposes for some theories of C∞- rings. South American Journal of Logic, 4(2):313–350, 2018.
Jean Cerqueira Berni, Rodrigo Figueiredo and Hugo Luiz Mariano. On the order theory for C ∞ −reduced C ∞ −rings and applications. Journal of Applied Logics, 9(1):93–134, 2022.
Jean Cerqueira Berni and Hugo Luiz Mariano. A universal algebraic survey of C∞−rings. arXiv preprint arXiv:1904.02728, 2019.
Jean Cerqueira Berni and Hugo Luiz Mariano. Topics on smooth commutative al- gebra. arXiv preprint arXiv:1904.02725, 2019.
Jean Cerqueira Berni and Hugo Luiz Mariano. Von Neumann regular C∞−rings and applications. arXiv preprint arXiv:1905.09617, 2019.
Descargas
Publicado
Versiones
- 2022-12-19 (2)
- 2022-12-16 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Jean Cerqueira Berni, Hugo Luiz Mariano
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores pueden celebrar acuerdos contractuales separados para la distribución no exclusiva de la versión publicada del trabajo de la revista (por ejemplo, publicarlo en un repositorio institucional o en un libro), con el reconocimiento de su publicación inicial en esta revista.