A Universal Algebraic Survey of C∞-Rings
DOI:
https://doi.org/10.14244/lajm.v1i01.5Palavras-chave:
C∞−rings, Algebraic constructionsResumo
This survey brings a detailed and systematic exposition of some fundamental results regarding the Universal Algebra of C∞−rings. Some of these were nowhere to be found – stated or proved – in the current literature. Our main contribution is to bundle these results up in a single text, using the unifying language of Universal Algebra and referring the reader to detailed proofs. Such a presentation is inspired by the treatment given by D. Joyce in [1] to some concepts involving these rings. Thus, we provide a comprehensive material with many known “taken for granted” results and constructions used everywhere in the literature about C∞−rings and their applications, providing a “propaedeutic exposition” for the reader’s benefit.
Referências
Ieke Moerdijk and Gonzalo E Reyes. Models for smooth infinitesimal analysis. Springer Science & Business Media, 2013.
Dominic Joyce. Algebraic Geometry over C∞-rings. Number 1256. American Mathematical Society, 2019. DOI: https://doi.org/10.1090/memo/1256
Eduardo J Dubuc. C∞-schemes. American Journal of Mathematics, 103(4):683– 690, 1981. DOI: https://doi.org/10.2307/2374046
Jean Cerqueira Berni and Hugo Luiz Mariano. A geometria diferencial sintética e os mundos onde podemos interpretá-la: um convite ao estudo dos aneis C∞. Revista Matemática Universitária, 1:5–30, 2022. DOI: https://doi.org/10.21711/26755254/rmu20222
Dominic Joyce. An introduction to C∞-schemes and C∞-algebraic geometry. arXiv:1104.4951, 2011.
Ieke Moerdijk and Gonzalo E Reyes. Rings of smooth functions and their localizations, i. Journal of Pure and Applied Algebra, (99):324–336, 1986. DOI: https://doi.org/10.1016/0021-8693(86)90030-X
Jean Cerqueira Berni and Hugo Luiz Mariano. Classifying toposes for some theories of C∞- rings. South American Journal of Logic, 4(2):313–350, 2018.
Jean Cerqueira Berni, Rodrigo Figueiredo and Hugo Luiz Mariano. On the order theory for C ∞ −reduced C ∞ −rings and applications. Journal of Applied Logics, 9(1):93–134, 2022.
Jean Cerqueira Berni and Hugo Luiz Mariano. A universal algebraic survey of C∞−rings. arXiv preprint arXiv:1904.02728, 2019.
Jean Cerqueira Berni and Hugo Luiz Mariano. Topics on smooth commutative al- gebra. arXiv preprint arXiv:1904.02725, 2019.
Jean Cerqueira Berni and Hugo Luiz Mariano. Von Neumann regular C∞−rings and applications. arXiv preprint arXiv:1905.09617, 2019.
Downloads
Publicado
Versões
- 19.12.2022 (2)
- 16.12.2022 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Jean Cerqueira Berni, Hugo Luiz Mariano
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores podem entrar em acordos contratuais adicionais separados para a distribuição não exclusiva da versão publicada do trabalho da revista (por exemplo, postá-lo em um repositório institucional ou publicá-lo em um livro), com um reconhecimento de sua publicação inicial nesta revista.